K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

Đáp án D.

Phương trình tương đương với

Đặt 2 x - 1 2 x = t → 4 x + 1 4 x = t 2 + 2 . Xét hàm số  t ( x ) = 2 x - 1 2 x  trên 0 ; 1 .

Đạo hàm t ' ( x ) = 2 x . ln   2 + ln   2 2 x > 0 ,   ∀ x ∈ 0 ; 1 ⇒  Hàm số t ( x )  luôn đồng biến trên  0 ; 1 . Suy ra min x ∈ 0 ; 1 t ( x ) = t ( 0 ) = 0  và  max x ∈ 0 ; 1 t ( x ) = t ( 1 ) = 3 2 . Như vậy t ∈ 0 ; 3 2 .

Phương trình (1) có dạng:

Phương trình (1) có nghiệm  t ∈ 0 ; 1 ⇔  phương trình ẩn t có nghiệm  t ∈ 0 ; 3 2 ⇔ 0 ≤ m - 1 ≤ 3 2 ⇔ 1 ≤ m ≤ 5 2 . Mà m ∈ ℤ nên m ∈ 1 ; 2  . Tổng tất cả các giá trị nguyên của m bằng 3.

21 tháng 2 2019

1. Xét x = - 2, thay vào pt ta dc: -1.0 = 4.0 (Hợp lí)

Vậy x = -2 là 1 nghiệm của pt

Xét x \(\ne\)- 2, ta có: x + 1 = 2 - x

<=> 2x = 1 <=> x = 1/2

Vậy S = {1/2; -2}

2. a. \(2\left(m+\frac{3}{5}\right)-\left(m+\frac{13}{5}\right)=5\)

<=> \(2m+\frac{6}{5}-m-\frac{13}{5}=5\)

<=> m = \(\frac{32}{5}\)

b. \(2\left(3m+1\right)+\frac{1}{4}-\frac{2\left(3m-1\right)}{5}+3m+\frac{1}{5}=5\)

<=> \(6m+2+\frac{1}{4}-\frac{6m-2}{5}+3m+\frac{1}{5}=5\)

<=> \(6m-\frac{6m-2}{5}+3m=5-2-\frac{1}{4}-\frac{1}{5}\)

<=> \(9m-\frac{6m-2}{5}=\frac{51}{20}\)

<=> \(\frac{45m-6m+2}{5}=\frac{51}{20}\)

<=> \(20\left(39m+2\right)=51.5\)

<=> 780m + 40 = 255

<=> 780m = 215

<=> m = \(\frac{43}{156}\)

10 tháng 3 2020

thanks

13 tháng 9 2018

Đáp án B

20 tháng 8 2018

Đáp án là B

Phương trình tương đương với

Xét hàm  Ta có  đồng biến

Mà  suy ra

Đặt u = cosx, 

Khi đó phương trình trở thành 

Xét 

Bảng biến thiên

Dựa vào bảng biến thiên suy ra phương trình có nghiệm khi

10 tháng 5 2017