K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=-3x^2+12x-12+12

=-3(x^2-4x+4)+12

==-3(x-2)^2+12<=12

Dấu = xảy ra khi x=2

Ta có: \(A=-2x^2-5x+3\)

\(=-2\left(x^2+\dfrac{5}{2}x-\dfrac{3}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\)

Ta có: \(\left(x+\dfrac{5}{4}\right)^2\ge0\forall x\)

\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2\le0\forall x\)

\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{5}{4}=0\)

hay \(x=-\dfrac{5}{4}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=-2x^2-5x+3\) là \(\dfrac{49}{8}\) khi \(x=-\dfrac{5}{4}\)

1 tháng 12 2021

\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)

\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)

Coi đây là PT bậc 2 ẩn x, PT có nghiệm 

\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)

Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)

\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)

\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)

Coi đây là PT bậc 2 ẩn x, PT có nghiệm

\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)

Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)

23 tháng 10 2020

Tìm GTNN

A = x2 - 10x + 3 = ( x2 - 10x + 25 ) - 22 = ( x - 5 )2 - 22 ≥ -22 ∀ x

Dấu "=" xảy ra khi x = 5

=> MinA = -22 <=> x = 5

B = 3x2 + 7x - 2 = 3( x2 + 7/3x + 49/36 ) - 73/12 = 3( x + 7/6 )2 - 73/12 ≥ -73/12 ∀ x

Dấu "=" xảy ra khi x = -7/6

=> MinB = -73/12 <=> x = -7/6

Tìm GTLN

A = -9x2 + 12x - 5 = -9( x2 - 4/3x + 4/9 ) - 1 = -9( x - 2/3 )2 - 1 ≤ -1 ∀ x

Dấu "=" xảy ra khi x = 2/3

=> MaxA = -1 <=> x = 2/3

B = -2x2 - 3x + 7 = -2( x2 + 3/2x + 9/16 ) + 65/8 = -2( x + 3/4 )2 + 65/8 ≤ 65/8 ∀ x

Dấu "=" xảy ra khi x = -3/4

=> MaxB = 65/8 <=> x = -3/4

19 tháng 4 2022

\(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\le7\)

\(A_{max}=7\Leftrightarrow x=2\)

19 tháng 4 2022

cảm ơn nha cậu nhìu nha!

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:
a. 
$C=16-3(x^2+4x+4)=16-3(x+2)^2$
Vì $(x+3)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow C\leq 16-3.0=16$

Vậy $C_{\max}=16$ khi $x=-2$

b.

$D=-x^2+5x=2,5^2-(x^2-5x+2,5^2)$

$=6,25-(x+2,5)^2\leq 6,25-0=6,25$

Vậy $D_{\max}=6,25$ khi $x=-2,5$

c.

$M=2x-x^2=1-(x^2-2x+1)=1-(x-1)^2\leq 1-0=1$
Vậy $M_{\max}=1$ khi $x=1$

a: Ta có: \(C=-3x^2-12x+4\)

\(=-3\left(x^2+4x-\dfrac{4}{3}\right)\)

\(=-3\left(x^2+4x+4-\dfrac{16}{3}\right)\)

\(=-3\left(x+2\right)^2+16\le16\forall x\)

Dấu '=' xảy ra khi x=-2

b: Ta có: \(D=-x^2+5x\)

\(=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

25 tháng 9 2021

\(a,=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\)

Dấu \("="\Leftrightarrow x=1\)

\(b,=-\left(x^2+4x+4\right)+4=-\left(x+2\right)^2+4\le4\)

Dấu \("="\Leftrightarrow x=-2\)

\(c,=-\left(9x^2-24x+16\right)-2=-\left(3x-4\right)^2-2\le-2\)

Dấu \("="\Leftrightarrow x=\dfrac{4}{3}\)

\(d,=-\left(x^2-4x+4\right)+3=-\left(x-2\right)^2+3\le3\)

Dấu \("="\Leftrightarrow x=2\)

13 tháng 10 2016

\(-3x^4+12x^2+1=-3\left(x^4-4x^2+4\right)+12+1\)

\(=13-3\left(x^2-2\right)^2\le13\)

Đạt GTLN khi \(x=\sqrt{2}\)

13 tháng 10 2016

tui nghĩ bài này phải là kiến thức lop9, thử xem sao, mong a2 xem giúp em

đặt t = x2có  -3(t2 - 4t +4) +4 +1

GTLN = 5