Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B lớn nhất
<=>6x+3 lớn nhất và |6x-4| nhỏ nhất
mà |6x-4| >/ 0
dấu "=" xảy ra<=>6x-4=0=>x=2/3
Bmax=6.2/3+3=7<=>x=2/3
vậy....
B = -x2 + 6x - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4 ≤ 4 ∀ x
Dấu "=" xảy ra <=> x = 3
Vậy MaxB = 4
Ta có: \(B=-x^2+6x-5\)
\(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-6x+9-4\right)\)
\(=-\left(x-3\right)^2+4\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2+4\le4\forall x\)
Dấu '=' xảy ra khi x-3=0
hay x=3
Vậy: Giá trị lớn nhất của B là 4 khi x=3
a.
\(P=\frac{6}{x^2-6x+17}\)
Ta thấy: $x^2-6x+17=(x-3)^2+8\geq 8$ với mọi $x\in\mathbb{R}$
$\Rightarrow P=\frac{6}{x^2-6x+17}\leq \frac{6}{8}=\frac{3}{4}$
Vậy $P_{\max}=\frac{3}{4}$. Giá trị này đạt tại $x-3=0\Leftrightarrow x=3$
b/
Ta có:
$6=a^2+b^2-ab=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a^2+b^2-2ab)$
$=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a-b)^2\geq \frac{1}{2}(a^2+b^2)$ với mọi $a,b$
$\Rightarrow 12\geq a^2+b^2$
Vậy $P_{\max}=12$. Giá trị này đạt tại $a=b=\pm \sqrt{6}$
\(B=7-6x-x^2\)
\(B=-\left(x^2+6x-7\right)\)
\(B=-\left(x^2+6x+9-16\right)\)
\(B=-\left(x+3\right)^2+16\le16\)
Max B = 16 \(\Leftrightarrow x=-3\)
B = 7 - 6x - x2
= -( x2 + 6x + 9 ) + 16
= -( x + 3 )2 + 16
-( x + 3 )2 ≤ 0 ∀ x => -( x + 3 )2 + 16 ≤ 16
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MaxB = 16 <=> x = -3
bằng 7. Vòng 11 olympic 7 đúng không? Mình làm rồi 7 là đúng đó!
Nhớ tick nha !