K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

Tập xác định -1 ≤ x ≤ 1, do đó 1 – x ≤ 2, 1 + x ≤ 2 ⇒ ( 1 - x )   +   ( 1 + x )   ≤   2 2   < 4 nên C sai; Ngoài ra vì 0 và 2 đều nhỏ hơn 2 nên chỉ cần xét xem 2 có phải là giá trị của hàm số không, dễ thấy khi x = 0 thì y = 2. Vậy max y = 2

Đáp án: B

NV
18 tháng 7 2021

Ta thấy A; B nằm cùng về 1 nửa mặt phẳng so với d

Theo BĐT tam giác: \(\left|XA-XB\right|\le AB\)

Đẳng thức xảy ra khi và chỉ khi X;A;B thẳng hàng hay X là giao điểm của AB và d

(Nếu ko cần tìm tọa độ điểm X mà chỉ cần tìm giá trị max thì tính độ dài AB là đủ)

\(\overrightarrow{AB}=\left(2;1\right)\Rightarrow\left|XA-XB\right|_{max}=AB=\sqrt{5}\)

11 tháng 12 2021

a: Vì a=-1<0 nên hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (-∞;2]

Bảng biến thiên là:

x-∞2+∞
y-∞1-∞

 

NV
3 tháng 11 2021

Đặt \(\sqrt{x^2+4x+5}=t\Rightarrow t\in\left[\sqrt{5};\sqrt{17}\right]\)

\(\Rightarrow y=f\left(t\right)=t^2-2t+7\)

\(-\dfrac{b}{2a}=1\notin\left[\sqrt{5};\sqrt{17}\right]\)

\(f\left(\sqrt{5}\right)=10+4\sqrt{5}\) ; \(f\left(\sqrt{17}\right)=22+4\sqrt{17}\)

\(\Rightarrow y_{min}=10+4\sqrt{5}\) ; \(y_{max}=22+4\sqrt{17}\)

3 tháng 11 2021

|x^2-x-m|=2x-1.Tìm m để pt có 4 nghiệm phân biệt

giúp ạ

17 tháng 4 2022

1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3

= 1-x/x + (2-2(1-x))/1-x  + 3

= 1-x/x + 2x/1-x + 3    >= 2√2 + 3

Dấu "=" xảy ra khi x =√2 - 1

17 tháng 4 2022

2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)

=> P = √z-1 / z + √x-2 / x + √y-3 / y 

= a/a^2+1 + b/b^2+2 + c/c^2+3

a^2+1 >= 2a              => a/a^2+1 <= 1/2

b^2+2 >= 2√2 b          => b/b^2+2 <= 1/2√2

c^2+3 >= 2√3 c            => c/c^2+3 <= 1/2√3

=> P <= 1/2 + 1/2√2 + 1/2√3

Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3

<=> z-1 = 1, x-2 = 2, y-3 = 3

<=> x=4, y=6, z=2

6 tháng 9 2021

Ta có \(2=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Leftrightarrow xy\ge1\)

\(A=\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{x^2+y^4+2x^2y}\\ \le\dfrac{1}{4\sqrt[4]{x^6y^6}}+\dfrac{1}{4\sqrt[4]{x^6y^6}}=\dfrac{1}{4xy}+\dfrac{1}{4xy}\\ \le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Dấu \("="\Leftrightarrow x=y=1\)

3 tháng 1 2021

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)

Ta có:

\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)

Ta có:

P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)

P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)

=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)

Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)

Ta có : 

P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)

Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)

<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)

=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)

\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)

Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...

Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)

<=> x=-y=\(\dfrac{1}{\sqrt{3}}\) 

NV
8 tháng 1 2023

\(D\le\dfrac{1}{2}\left(1+\dfrac{x}{1+yz}\right)+\dfrac{1}{2}\left(1+\dfrac{y}{1+zx}\right)+\dfrac{z}{2+2xy}\)

\(=1+\dfrac{x}{2\left(1+yz\right)}+\dfrac{y}{2\left(1+zx\right)}+\dfrac{z}{2\left(1+xy\right)}\)

Do \(0\le x;y;z\le1\)

\(\Rightarrow\left(1-x\right)\left(1-y\right)\ge0\Leftrightarrow xy+1\ge x+y\)

\(\Leftrightarrow2\left(xy+1\right)\ge xy+1+x+y\ge x+y+z\)

\(\Rightarrow\dfrac{z}{2\left(1+xy\right)}\le\dfrac{z}{x+y+z}\)

Tương tự: \(\dfrac{x}{2\left(1+yz\right)}\le\dfrac{x}{x+y+z}\) ; \(\dfrac{y}{2\left(1+zx\right)}\le\dfrac{y}{x+y+z}\)

Cộng vế:

\(P\le1+\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=2\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;0\right)\)

8 tháng 1 2023

Thầy cho em hỏi xíu ạ

Tại sao: \(xy+1+x+y\ge x+y+z\)

10 tháng 9 2017

#Đêm qua tự nhiên mơ thấy cách này, dậy làm luôn :v

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(x^2+y^2+1\right)\left(1+1+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\dfrac{1}{x^2+y^2+1}\le\dfrac{2+z^2}{\left(x+y+z\right)^2}.\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\dfrac{1}{y^2+z^2+1}\le\dfrac{2+x^2}{\left(x+y+z\right)^2};\dfrac{1}{x^2+z^2+1}\le\dfrac{2+y^2}{\left(x+y+z\right)^2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\dfrac{x^2+y^2+z^2+6}{\left(x+y+z\right)^2}=\dfrac{x^2+y^2+z^2+2\left(xy+yz+xz\right)}{\left(x+y+z\right)}=1\)

Khi \(x=y=z=1\)

5 tháng 9 2017

cho em hỏi ngu tý,đây là toán ak