Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : |1/3-x| >=0 với mọi giá trị của x
=>5+|1/3-x|>=5 với mọi giá trị của x
=>A>=5 với mọi giá trị của x
=>Amin=5 <=>1/3-x=0
<=>x=1/3
Vậy Amin=5 khi x=1/3
b) Ta có : |x-2/3| >=0 với mọi giá trị của x
=> 2.|x-2/3| >=0 với mọi giá trị của x
=> 2.|x-2/3| -1>= -1 với mọi giá trị của x
=>B>= -1 với mọi giá trị của x
=>Bmin =-1 <=> x-2/3=0
<=>x=2/3
=>Bmin =-1 khi x=2/3
NHỚ CHO MIK NHA !!!!!!!!!!!!!!!!
mk vẫn chưa hiểu Bmin Amin / >=5
giúp mk nha mk sẽ bấm k nữa cho
bạn cho nhìu ứa nên mik trả lời vài câu nha:
1.
A. Vì |x- 1/2| >=0 => Amin =0
B.Vì |x + 3/4| >=0 => B >= 2 (cộng 2 mà) => Bmin =2 khi x+ 3/4 =0 ....
các câu còn lại làm tương tự nhé
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
a) Ta có : \(|x-7|\ge0\)
\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)
Mà \(A=0\)
\(\Leftrightarrow5|x-7|=0\)
\(\Leftrightarrow x=7\left(2\right)\)
Từ (1) và (2) => max A = 124
b)
+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)
\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)
Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )
Còn lại bạn tự làm nha .
Cuối cùng ra \(_{max}B=\frac{7}{6}\)
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
a) \(A=-\left|x+\frac{3}{4}\right|-3\)
Vì \(\left|x+\frac{3}{4}\right|\ge0\Rightarrow-\left|x+\frac{3}{4}\right|\le0\Rightarrow A=-\left|x+\frac{3}{4}\right|-3\le-3\)
=>\(A_{max}=-3\)=> \(\left|x+\frac{3}{4}\right|=0\Rightarrow x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
Vậy Amax = -3 khi x=-3/4
b) \(B=2-\left(x+\frac{5}{6}\right)^2\)
Vì \(\left(x+\frac{5}{6}\right)^2\ge0\Rightarrow B=2-\left(x+\frac{5}{6}\right)^2\le2\)
=>\(B_{max}=2\Rightarrow\left(x+\frac{5}{6}\right)^2=0\Rightarrow x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)
Vậy Bmax=2 khi x=-5/6