Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
\(B=\left|2x+7\right|-1\)
Ta có: \(\left|2x+7\right|\ge0\forall x\)
\(\Rightarrow\left|2x+7\right|-1\ge-1\)
\(B=-1\Leftrightarrow\left|2x+7\right|=0\Leftrightarrow x=-3,5\)
Vậy \(B_{min}=-1\Leftrightarrow x=-3,5\)
\(C=-\left|5x-3\right|-2\)
Ta có: \(\left|5x-3\right|\ge0\forall x\)
\(-\left|5x-3\right|\le0\forall x\)
\(\Rightarrow-\left|5x-3\right|-2\le-2\forall x\)
\(C=-2\Leftrightarrow\left|5x-3\right|=0\Leftrightarrow x=\frac{3}{5}\)
Vậy \(C_{max}=-2\Leftrightarrow x=\frac{3}{5}\)
Câu D tương tự câu C
Tham khảo nhé~