K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

\(A=\frac{-1}{2x+3}\)
Để A có giá trị nguyên thì -1 phải chia hết cho 2x+3
                            hay 2x+3\(\in\)Ư(-1)={1;-1}
                             =>x={-1;-2}

a) \(2x^2-2x-x^2+6=0\) 

\(\Leftrightarrow x^2-2x+1+5=0\)

\(\Leftrightarrow\left(x-1\right)^2=-5\) ( vô lý)

Vậy không có x thoả mãn \(2x.\left(x-1\right)-x^2+6=0\)

b) \(x^4-2x^2.\left(3+2x^2\right)+3x^2.\left(x^2+1\right)=-3\) 

\(\Leftrightarrow x^4-6x^2-4x^4+3x^4+3x^2+3=0\)

\(\Leftrightarrow3-3x^2=0\)

\(\Leftrightarrow3x^2=3\Leftrightarrow x^2=1\) \(\Leftrightarrow x\in\left\{-1;1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

c) \(\left(x+1\right).\left(x^2-x+1\right)-2x=x.\left(x-2\right).\left(x+2\right)\)

\(\Leftrightarrow x^3+1-2x-x.\left(x^2-4\right)=0\)

\(\Leftrightarrow x^3+1-2x-x^3+4x=0\)

\(\Leftrightarrow1+2x=0\Leftrightarrow x=\dfrac{-1}{2}\)

Vậy x=\(\dfrac{-1}{2}\)

d) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right).\left(x+2\right)=15\)

\(\Leftrightarrow x^3+27-x.\left(x^2-4\right)-15=0\)

\(\Leftrightarrow x^3-27-x^3+4x-15=0\)

\(\Leftrightarrow4x-42=0\)

\(\Leftrightarrow x=10,5\)

Vậy x=10,5

14 tháng 12 2020

ĐKXĐ : 

\(x^4-x^3+2x^2-x+1\ne0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)\ne0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+1\right)\ne0\)

Pt

\(\Leftrightarrow x^4+x^3+x+1=0\) 

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\pm\dfrac{\sqrt{3}\iota+1}{2}\end{matrix}\right.\)

Chắc không cần tìm đkxđ đâu!

12 tháng 3 2020

Bài 2:

(1 + x)3 + (1 - x)- 6x(x + 1) = 6

<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6

<=> -6x + 2 = 6

<=> -6x = 6 - 2

<=> -6x = 4

<=> x = -4/6 = -2/3

Bài 3: 

a) (7x - 2x)(2x - 1)(x + 3) = 0

<=> 10x3 + 25x2 - 15x = 0

<=> 5x(2x - 1)(x + 3) = 0

<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0

<=> x = 0 hoặc x = 1/2 hoặc x = -3

b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0

<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0

<=> -x2 + 9 = 0

<=> -x2 = -9

<=> x2 = 9

<=> x = +-3

c) (x + 4)(5x + 9) - x2 + 16 = 0

<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0

<=> 4x2 + 29x + 52 = 0

<=> 4x2 + 13x + 16x + 52 = 0

<=> 4x(x + 4) + 13(x + 4) = 0

<=> (4x + 13)(x + 4) = 0

<=> 4x + 13 = 0 hoặc x + 4 = 0

<=> x = -13/4 hoặc x = -4

12 tháng 3 2020

Lê Nhật Hằng cảm ơn bạn nha

8 tháng 5 2018

a,ĐKXĐ \(x^3-8\ne0\Leftrightarrow x^3\ne8\Leftrightarrow x\ne2\)

b,\(\Leftrightarrow3x^2+6x+12=0\)

    \(\Leftrightarrow3\left(x^2+2x+1\right)+9=0\)

   \(\Leftrightarrow3\left(x+1\right)^2+9=0\)(VÔ LÝ VÌ 3(x+1)2>=0 =>3(x+1)2+9>0)

vì vây ko có giá trị x để F =0

C, VỚI ĐKXĐ trên ,ta có 

\(F=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)

    \(=\frac{3}{x-2}\)

14 tháng 7 2018

\(a,\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow x-3=\pm2\)

\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)

Vậy \(x=5\)hoặc \(x=1\)

\(b,x^2-2x=24\)

\(\Leftrightarrow x^2-2x+1-1=24\)

\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)

\(\Leftrightarrow x-1=\pm5\)

\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)

Vậy \(x=6\) hoặc \(x=-4\)

14 tháng 7 2018

\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow10x+255=0\)

\(\Leftrightarrow10x=-255\)

\(\Leftrightarrow x=\frac{-51}{2}\)

\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x-27=1\)

\(\Leftrightarrow4x=28\)

\(\Leftrightarrow x=7\)

13 tháng 12 2019

a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)

Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)

Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)

Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)

b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3

Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)

=> x + 2 = 3(x - 3)

=> x + 2 = 3x - 9

=> x - 3x = -9 - 2

=> -2x = -11

=> x = 11/2 (tm)

Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)

c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3

Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)

Để M \(\in\)Z <=> 3 \(⋮\)x - 3

=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng:

x - 3 1 -1 3 -3
  x 4 2 (ktm) 6 0

Vậy ...