K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

\(\sqrt{-x^2+5x-4}+\dfrac{1}{2x-7}\)

Được xác định khi:

\(\left\{{}\begin{matrix}-x^2+5x-4\ge0\\2x-7\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(x-4\right)\left(x-1\right)\ge0\\2x\ne7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}\left\{{}\begin{matrix}-\left(x-4\right)\ge0\\x-1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}-\left(x-4\right)< 0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\\x\ne\dfrac{7}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}\left\{{}\begin{matrix}-x\ge-4\\x\ge1\end{matrix}\right.\\\left\{{}\begin{matrix}-x< -4\\x< 1\end{matrix}\right.\end{matrix}\right.\\x\ne\dfrac{7}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}\left\{{}\begin{matrix}x\le4\\x\ge1\end{matrix}\right.\\\left\{{}\begin{matrix}x>4\\x< 1\end{matrix}\right.\end{matrix}\right.\\x\ne\dfrac{7}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}1\le x\le4\\x\ne\dfrac{7}{2}\end{matrix}\right.\)

22 tháng 10 2023

8 tháng 7 2021

\(\sqrt{\dfrac{4}{2x+3}}\) xác định khi \(\dfrac{4}{2x+3}\ge0\Rightarrow2x+3>0\Rightarrow x>-\dfrac{3}{2}\)

\(\sqrt{\dfrac{2x-1}{2-x}}\) xác định khi \(\dfrac{2x-1}{2-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2-x< 0\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow\dfrac{1}{2}\le x< 2\)

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

16 tháng 11 2021

Đề sai rồi bạn

18 tháng 12 2020

a/ ĐKXĐ : \(-2x+3\ge0\)

\(\Leftrightarrow x\le\dfrac{3}{2}\)

b/ ĐKXĐ : \(3x+4\ge0\)

\(\Leftrightarrow x\ge-\dfrac{4}{3}\)

c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x

d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)

\(\Leftrightarrow3x+5< 0\)

\(\Leftrightarrow x< -\dfrac{5}{3}\)

e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)

P.s : không chắc lắm á!

 

24 tháng 11 2021

\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)

2 tháng 9 2019

AI GIẢI HỘ MÌNH K CHO Ạ!!!

13 tháng 9 2019

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)