Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=3 vào pt, ta được:
\(12-2\cdot\left(1-3\right)^2=4\left(3-m\right)-\left(3-3\right)\cdot\left(2\cdot3+5\right)\)
\(\Leftrightarrow12-2\cdot4=4\left(3-m\right)\)
=>12-4m=12-8=4
=>4m=8
hay m=2
b: Thay x=1 vào pt, ta được:
\(\left(9\cdot1+1\right)\cdot\left(1-2m\right)=\left(3\cdot1+2\right)\left(3\cdot1-5\right)\)
\(\Leftrightarrow10\left(1-2m\right)=5\cdot\left(-2\right)=-10\)
=>1-2m=-1
=>2m=2
hay m=1
Bài 1:
a.
Thay x = 1 là nghiệm của pt, ta được:
\(1^3+a.1^2-4.1-4=0\)
\(\Leftrightarrow1+a-4-4=0\)
\(\Leftrightarrow1+a-8=0\)
\(\Leftrightarrow a-7=0\)
\(\Leftrightarrow a=7\)
b.
Với a = 7 ta được:
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow x^3-x^2+8x^2-8x+4x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+8x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+8x+4=0\end{matrix}\right.\)
Ta có:
\(x^2+8x+4=x^2+2.x.4+4^2-12\)
\(=\left(x+4\right)^2-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)
Vậy. \(\left[{}\begin{matrix}x=1\\x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)
a) Thay x=2 vào phương trình ta có:
(2.2+1)(9.2+2k)+5(2+2)=40
5(18+2k)+20=40
90+10k=20
10k=-70
k=-7
b) Thay x=1 vào phương trình ta có:
2(2.1+1)+18=3(1+2)(2.1+k)
2+2+18=(3+6)(2+k)
22=20+18k
2=18k
k=1/9
1) Phương trình ban đầu tương đương :
\(\left(2021x-2020\right)^3=\left(2x-2\right)^3+\left(2019x-2018\right)^3\)
Đặt \(a=2x-2,b=2019x-2018\)
\(\Rightarrow a+b=2021x-2020\)
Khi đó phương trình có dạng :
\(\left(a+b\right)^3=a^3+b^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow3\cdot\left(2x-2\right)\cdot\left(2019x-2018\right)\cdot\left(2021x-2002\right)=0\)
\(\Leftrightarrow\)Hoặc \(2x-2=0\)
Hoặc \(2019x-2018=0\)
Hoặc \(2021x-2020=0\)
\(\Rightarrow x\in\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\) (thỏa mãn)
Vậy : phương trình đã cho có tập nghiệm \(S=\left\{1,\frac{2018}{2019},\frac{2020}{2021}\right\}\)
\(x\left(2x-3\right)+x\left(x-m\right)=3x^2+x-m\)
\(\Leftrightarrow2x^2-3x+x^2-xm=3x^2+x-m\)
\(\Leftrightarrow-3x-xm=x-m\)
\(\Leftrightarrow4x+xm=m\Leftrightarrow x\left(4+m\right)=m\)
\(\Leftrightarrow x=\frac{m}{m+4}\)
Phương trình có nghiệm không âm \(\Leftrightarrow x\ge0\)
\(\Rightarrow\frac{m}{m+4}\ge0\)
Mà \(m+4>m\)nên \(\orbr{\begin{cases}m\ge0\\m+4\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge0\\m\le-4\end{cases}}\)
a) m = -3/4
b) m = 1
mình tính ra như vầy nè , tick cho mình nha ! ! ! thanks