Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Trước hết tìm giao điểm của hai đường thẳng ( d 1 ) và ( d 2 ).
- Tìm hoành độ của giao điểm:
2/5x + 1/2 = 3/5x - 5/2 ⇔ 1/5x = 6/2 ⇔ x = 15.
- Tìm tung độ giao điểm:
y = 2/5.15 + 1/2 = 6,5.
*Tìm k (bằng cách thay tọa độ của giao điểm vào phương trình ( d 3 ).
6,5 = k.15 + 3,5 ⇔ 15k = 3 ⇔ k = 0,2.
Trả lời: Khi k = 0,2 thì ba đường thẳng đồng quy tại điểm (15; 6,5).
a, ta có
(d1)=(d2)
2x-7=-x+5
\(\Leftrightarrow\)3x=12
\(\Leftrightarrow\)x=4
ta có
(d1)=(d3)
2x-7=kx+5
\(\Leftrightarrow\)2.4-7=k4+5
\(\Leftrightarrow\)k=-1
a. PTTDGD của (d1) và (d2):
\(-2x=x-3\)
\(\Rightarrow x=1\)
Thay x = 1 vào (d1): \(y=-2\cdot1=-2\)
Vậy (d1) cắt (d2) tại điểm A(1;-2)
Lời giải:
a. PT hoành độ giao điểm: $-2x=x-3$
$\Leftrightarrow x=1$
$y=-2x=1(-2)=-2$
Vậy giao điểm của $(d_1), (d_2)$ là $(1,-2)$
b.
Để $(d_1), (d_2), (d_3)$ đồng quy thì $(d_3)$ cũng đi qua giao điểm của $(d_1), (d_2)$
Tức là $(1,-2)\in (d_3)$
$\Leftrightarrow -2=m.1+4\Leftrightarrow m=-6$
a) x =-2 d' => y =2(-2) -1 =-5 => M(-2;-5)
d cắt d' tại M =>k khác 2 và M thuộc (d) => k.(-2) -4 =-5 => -2k = -1 => k =1/2 (TM)
b) + Phương trình hoành độ giao điểm của d1 và d2 là:
3x =x+2 => x =1
với x =1 (d1) => y =3 => d1 cắt d2 tại N(1;3)
Để 3 đường thẳng đồng quy thì d3 qua N => (m-3).1 +2m +1 =3 => m -3 +2m +1 =3 => 3m =5 => m =5/3