\(K=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

ĐKXĐ: \(x\ge0\)

\(K=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)

\(K=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+1\right)}{\left(\sqrt{x}-1\right)\left(x+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right]:\left[\dfrac{x+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right]-1\)

\(K=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+1\right)}:\dfrac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-1\)

\(K=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x-2\sqrt{x}+1}-1\\K=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}-1\\ K=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-1 \)

\(K=\dfrac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{x+2}{\sqrt{x}-1}\)

a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)

\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)

\(=\dfrac{1}{x-\sqrt{3}}\)

b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)

\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)

\(=x-2\sqrt{x}+1\)

c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)

31 tháng 5 2017

sửa đề:

\(M=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

ĐKXĐ: \(x\ge0\);\(x\ne\pm1\)

\(M=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\\M=\left[\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right].\dfrac{\sqrt{x}}{x+\sqrt{x}+2} \)
\(M=\dfrac{x+\sqrt{x}+2}{x-1}.\dfrac{\sqrt{x}}{x+\sqrt{x}+2}=\dfrac{\sqrt{x}}{x-1}\)
2 tháng 8 2017

ĐK \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

Ta có \(A=\left(\frac{1}{\sqrt{x}-1}+\frac{x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{x-\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{\sqrt{x}+2+x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}:\frac{x-1-x+\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+3}=\frac{x+3}{\sqrt{x}+3}\)

10 tháng 8 2018

a,Điều kiện:x\(\ge\)0;x\(\ne\)1

=\(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(\times\)\(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

=\(\dfrac{\sqrt{x}-1_{ }}{\sqrt{x}}\)

b,<=>\(\dfrac{\sqrt{x}_{ }-1}{\sqrt{x}}\)=\(\dfrac{1}{3}\)

<=>3\(\sqrt{x}\)-3=\(\sqrt{x}\)

<=>2\(\sqrt{x}\)=3

<=>x=9/4