Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
a: x chia hết cho 4;5;10
nên \(x\in BC\left(4;5;10\right)\)
mà 10<=x<50
nên x=40
b: x=33
Bài giải
a, Ta có : \(113+x\text{ }⋮\text{ }7\)
\(\Leftrightarrow\text{ }113+x\text{ }\inƯ\left(7\right)\)
Ta có bảng :
\(113+x\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(-114\) | \(-112\) | \(-120\) | \(-106\) |
\(\Rightarrow\text{ }x\in\text{ }\left\{-114\text{ ; }-112\text{ ; }-120\text{ ; }-106\right\}\)
b, \(113+x\text{ }⋮\text{ }13\)
\(\Leftrightarrow\text{ }113+x\inƯ\left(13\right)\)
Ta có bảng :
\(113+x\) | \(-1\) | \(1\) | \(-13\) | \(13\) |
\(x\) | \(-114\) | \(-112\) | \(-120\) | \(-106\) |
\(\Rightarrow\text{ }x\in\text{ }\left\{-114\text{ ; }-112\text{ ; }-120\text{ ; }-106\right\}\)
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
113 + x chia 7 dư 5
Mà 113 chia 7 dư 1
Nên x chia 7 dư 4
Vậy x có dạng 7k + 4