Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> \(A=19^{5^1}+2^{9^1}\)
<=>\(A=19^5+2^9\)
Ta thấy: 19 ≡ 9(mod 10)
<=>19 ≡ -1(mod 10)
<=>195 ≡ (-1)5(mod 10)
<=>195 ≡ -1(mod 10)
Lại có: 29=512 ≡ 2(mod 10)
<=>29 ≡ 2(mod 10)
=>195+29 ≡ -1+2(mod 10)
<=>A≡1(mod 10)
Vậy chữ số tận cùng của A là 1
Tìm chữ số tận cùng của :
\(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}\)
Các bạn giúp mK nhé . Thanks
Ta có: \(5\equiv1\left(mod4\right)\)
\(\Rightarrow5^{1^{8...}}\equiv1\left(mod4\right)\)
=> 51...có dạng 4k+1
=> 195...có dạng 194k+1=194k.19=...1.19 tận cùng 9
29...có dạng 24k+1=24k.2=...6.2 tận cùng 2
Do đó A tận cùng 1
Đây là dạng toán nâng cao chuyên đề chữ số tận cúng của lũy thừa. Cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay Olm sẽ hướng dẫn các em làm dạng này như sau:
\(A=19^{5^{1^{8^{9^0}}}}\) + \(2^{9^{1^{9^{6^9}}}}\)
+ Ta có: 5 \(\equiv\) 1 (mod 2) ⇒ \(5^{1^{8^{9^0}}}\) \(\equiv\) \(1^{1^{8^{9^0}}}\) (mod 2)
⇒ \(5^{1^{8^{9^0}}}\) \(\equiv\) 1 (mod2)
Vậy đặt \(5^{1^{8^{9^0}}}\) = 2k + 1 khi đó
\(19^{5^{1^{8^{9^0}}}}\) = \(19^{2k+1}\) = (192)k.19 = (\(\overline{..1}\))k.19 = \(\overline{..1}^{ }.19\)= \(\overline{..9}\) (1)
+ Mặt khác: 9 \(\equiv\) 1 (mod 4) ⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) \(^{1^{1^{9^{6^9}}}}\) (mod 4)
⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) 1 (mod 4)
Vậy đặt \(^{9^{1^{9^{6^9}}}}\) = 4k + 1 khi đó
\(2^{9^{1^{9^{6^9}}}}\) = 24k+1 = (24)k.2 = (\(\overline{..6}\))k.2 = \(\overline{..6}\).2 = \(\overline{..2}\) (2)
Kết hợp (1) và (2) ta có:
A = \(\overline{..9}\) + \(\overline{..2}\) = \(\overline{..1}\)
x-y = 3 =>x=3+y
=>\(B=\left|3+y-6\right|+\left|y+1\right|=\left|y-3\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
Áp dụng BĐT chứa dấu giá trị tuyệt đối:
\(B=\left|3-y\right|+\left|y+1\right|\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra khi: \(\left(3-y\right)\left(y+1\right)\ge0\)
=>3-y\(\ge\)0 và y+1\(\ge\)0 hoặc 3-y\(\le\)0 và y+1\(\le\)0
=>\(-1\le y\le3\)
Vậy GTNN của B là 4 tại \(-1\le y\le3\) và x-y=3
B1: \(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}=19^5+2^9=\overline{....9}+512=\overline{....1}\)
Vậy chữ số tận cùng của A là 1
\(A=19^{5^{1^{8^{9^0}}}}\)\(+2^{9^{1^{9^{6^9}}}}\)
\(=19^{5^1}+2^{9^1}\)
\(=19^5+2^9\)
\(=...9+512\)
\(=...1\)
Vậy chữ số tận cùng của A là 1
1.
A=19^5^1^8^9^0+2^9^1^9^6^9
Ta luôn có 1a=1 với a là số nguyên dương
=>19^5^1^8^9^0=195 và 2^9^1^9^6^9=29
=>A=195+29=(192)2.19+(24)2.2=(...1)2.19+(...6)2.2=...1.19+...6.2=...1
Vậy A có tận cung là 1.
2.
B=1/3+1/32+...+1/32005
3B=1+1/3+1/32+...+1/32004
3B-B=1-1/32005
2B=1-1/32005<1
=>2B<1=>B<1/2
Vậy B<1/2.
.
.
1) Ta có:
\(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}\)
Mà 195=194+1=...1.19=...19
29=22.4+1=...6 .2=...2
=>A=...19 + ...2= ...1
Vậy A có chữ số tận cùng là 1
a.Theo đề ta có:
4^5^6^7
=4^5^(...6) (vì 6 khi lũy thừa lên thì tận cùng không đổi)
=4^(...5) (vì 5 khi lũy thừa lên thì tận cùng không đổi)
=(...4) (vì 4 khi lũy thừa một số mũ lẻ thì tận cùng không đổi)
Vậy 4^5^6^7 có tận cùng là 4
b.
Ta có:
9 nếu lũy thừa một số mũ lẻ thì tận cùng của nó sẽ là 9.
Áp dụng vào bài, ta có:
9^9^9^9
= 9^9^(...9)
= 9^(...9)
= (...9)
Vậy 9^9^9^9 có tận cùng là 9.
(Nhớ cho mình đúng nha)
Math Erro!!! :)^_^