Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{-3}{4}\)
⇒\(\dfrac{x}{-3}=\dfrac{y}{4}\)
⇒\(\dfrac{2x}{-6}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{-6}=\dfrac{3y}{12}=\dfrac{3y-2x}{12-\left(-6\right)}=\dfrac{36}{18}=2\)
⇒\(\left\{{}\begin{matrix}x=2.-3=-6\\y=2.4=8\end{matrix}\right.\)
Lời giải:
a.
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
\(\Rightarrow \left\{\begin{matrix} x=60\\ y=45\\ z=40\end{matrix}\right.\)
b)
Từ đkđb suy ra \(\frac{10x}{1}=\frac{5y}{\frac{1}{3}}=\frac{z}{\frac{1}{6}}=\frac{10x-5y+z}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)
\(\Rightarrow \left\{\begin{matrix} x=3\\ y=2\\ z=5\end{matrix}\right.\)
10x :5y =20y
10x = 20y.5y=100y2
x = 10y2
nếu y =1 thì x = 10
y =2 thì x = 40
..................
\(\left\{{}\begin{matrix}2x=5y\\x-y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5x=0\\x-y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5y=0\\2x-2y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=18\\2x-2y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=15\end{matrix}\right.\)
a) \(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
⇒\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c: Ta có: 5x=8y=20z
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)
Do đó: x=24; y=15; z=6
a) xy + 4x = 35 + 5y
=> xy + 4x - 5y = 35
=> x(y + 4) - 5(y + 4) = 15
=> (x - 5)(y + 4) = 15
=> x - 5;y + 4 \(\in\)Ư(15) = {1; 3; 5; 15}
Lập bảng :
x - 5 | 1 | 3 | 5 | 15 |
y + 4 | 15 | 5 | 3 | 1 |
x | 6 | 8 | 10 | 20 |
y | 11 | 1 | -1(loại) | -3(loại) |
Vậy ...
b) 2|x| + y2 + y = 2x + 1
Ta có: 2x + 1 là số lẻ => 2|x| + y2 + y là số lẻ
Mà y2 + y = y(y + 1) là số chẵn => 2|x| là số lẻ
<=> 2|x| = 1 <=> 2|x| = 20 <=> |x| = 0 <=> x = 0
Với x = 0 => 20 + y2 + y = 2.0 + 1
=> 1 + y2 + y = 1
=> y(y + 1) = 0
=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Do x; y \(\in\)N => x = y = 0 (tm)
Câu 2:
Vậy GTNN của A=-11
Câu 3:
GTNN của khi -2x+1 nhỏ nhất. Vậy -2x+1=1(vì mẫu số khác 0 mà) nên x=0
vậy GTNN của B là 3
Câu 4
Trong tam giác vuông có cạnh huyền lớn nhất nên:
Vậy a=16
Câu 5:
Ta thấy nên
Nhìn vào biểu thức thấy ngay x=1;y=2
Câu 6: Khoảng cách từ A đến O chính là đường chéo của tam giác vuông OAB(với B trên Ox là -3 ý)
Kết quả là 5
Câu 7:
Xét suy ra x là số lẻ.
Đặt x=2k+1. Thay x=2k+1 vào có:
chia hết cho 2 mà y nguyên tố nên y=2. Thay y=2 vào suy ra x=3
Lời giải:
a. Thay $x=y$ vào điều kiện ban đầu thì:
$x+x=10$
$2x=10$
$x=5$
$\Rightarrow y=x=5$
Vậy $(x,y)=(5,5)$
b. Thay $x=y$ vào điều kiện đầu:
$2x+3x=180$
$5x=180$
$x=36$
$y=x=36$
Vậy $(x,y)=(36,36)$
c. Thay $y=2x$ vào điều kiện đầu thì:
$3x+5.2x=13$
$13x=13$
$x=1$
$y=2x=2$
Vậy $(x,y)=(1,2)$
a) Ta có: x=y
mà x+y=10
nên \(x=y=\dfrac{10}{2}=5\)
b) Ta có: \(\left\{{}\begin{matrix}2x+3y=180\\x=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y+3y=180\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=180\\x=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=36\\x=36\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+10x=13\\y=2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a) 2x + 1 . 3y = 12x
2x + 1 . 3y = 22x . 3x
\(\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\orbr{\begin{cases}x=1\\y=x\end{cases}}\)
Vậy x = y =1
b) 10x : 5y = 20y
10x = 20y . 5y
10x = 100y
10x = 102y
x = 2y
Nguồn: Internet
Hk tốt