Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1b.
Cach 1
Ta co:
\(M=\frac{x^2-2x+2015}{x^2}\)
\(\Leftrightarrow\left(M-1\right)x^2+2x-2015=0\)
Xet \(M=1\)suy ra:\(x=\frac{2015}{2}\)
Xet \(M\ne1\)
\(\Leftrightarrow\Delta^`\ge0\)
\(1+\left(M-1\right).2015\ge0\)
\(\Leftrightarrow2015M-2014\ge0\)
\(\Leftrightarrow M\ge\frac{2014}{2015}\)
Dau '=' xay ra khi \(x=-\frac{1}{M-1}\Leftrightarrow x=2015\)
Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)
Cach 2
\(M=\frac{x^2-2x+2015}{x^2}=\frac{2014x^2+\left(x-2015\right)^2}{2015x^2}=\frac{2014}{2015}+\frac{\left(x-2015\right)^2}{2015x^2}\ge\frac{2014}{2015}\)
Dau '=' xay ra khi \(x=2015\)
Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)
Bài 2 :
a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.
Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.
b) Trước hết : \(23\le\overline{a_7a_8}\le46\)
Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)
Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.
Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.
Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).
Bài 1 :
Không đủ dữ kiện.
Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.
Nguyen p nguyên tố=>p2>p<=>p2-1>p-1
=>2y(y+1)>2x(x+1) mà: x,y nguyên dưong=>y>x
Lời giải:
Lấy PT dưới trừ PT trên thu được:
\(2y(y+2)-2x(x+2)=p^2-p\)
\(\Leftrightarrow 2(y-x)(y+x+2)=p(p-1)\)
\(\Rightarrow 2(y-x)(y+x+2)\vdots p(1)\)
Vì $p=2x(x+2)+1\geq 7$ với mọi $x$ nguyên dương nên $p$ là số nguyên tố lẻ. $\Rightarrow (2,p)=1(2)$
Lại có:
Hiển nhiên $y>x$ nên $y-x$ dương.
\((y-x)^2< 2(y-x)(y+x+2)=p(p-1)< p^2\)
\(\Rightarrow y-x< p(3)\)
Từ \((1);(2);(3)\Rightarrow y+x+2\vdots p\)
Mà:
\(p=2x(x+2)+1>2x^2\geq 2x\Rightarrow x< \frac{p}{2}\)
\(p^2=2y(y+2)+1>y^2\Rightarrow y< p\)
\(\Rightarrow x+y+2< \frac{p}{2}+p+2< 2p\) với $p\geq 7$
Do đó để $x+y+2\vdots p$ thì $x+y+2=p$
\(\Rightarrow y-x=\frac{p-1}{2}\)
\(\Rightarrow x=\frac{p-3}{4}\)
Thay vào PT đầu tiên:
\(p-1=\frac{p-3}{2}.\frac{p+5}{4}\)
\(\Leftrightarrow 8(p-1)=p^2+2p-15\Leftrightarrow (p+1)(p-7)=0\Rightarrow p=7\)
tìm số \(\overline{ab}\) biết \(\left(\overline{ab}\right)^2-\left(\overline{ba}\right)^2\) là 1 SCP
Ta có \(A=\left(\overline{ab}\right)^2-\left(\overline{ba}\right)^2=\left(10a+b\right)^2-\left(10b+a\right)^2\)
\(A=\left(10a+b-10b-a\right)\left(10a+b+10b+a\right)=\left(9a-9b\right)\left(11a+11b\right)\)
\(A=9.11.\left(a-b\right)\left(a+b\right)\)
Do A là SCP và 9 là SCP \(\Rightarrow11\left(a-b\right)\left(a+b\right)\) là SCP
\(\Rightarrow\left(a-b\right)\left(a+b\right)=11k\) với k là SCP \(\Rightarrow\left(a-b\right)\left(a+b\right)\) là ước của 11
Lỡ tay bấm nút gửi, làm tiếp xuống vậy :D
Do \(\left\{{}\begin{matrix}0\le a-b\le9\\1\le a+b\le18\end{matrix}\right.\) và 11 là số nguyên tố
\(\Rightarrow a+b=11\) và \(a-b\) là SCP
Ta có các cặp số sau:
\(\left\{{}\begin{matrix}a+b=11\\a-b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=11\\a-b=4\end{matrix}\right.\) \(\Rightarrow\) không có a, b tự nhiên thỏa mãn
\(\left\{{}\begin{matrix}a+b=11\\a-b=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10>9\\b=1\end{matrix}\right.\) (loại)
Vậy số cần tìm là 65