Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: (x-3)(y+2)=5
nên (x-3) và (y+2) là ước của 5
\(\Leftrightarrow x-3;y+2\in\left\{1;-5;-1;5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-3=1\\y+2=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-3=5\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-3=-1\\y+2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-7\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-3=-5\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(4;3\right);\left(8;-1\right);\left(2;-7\right);\left(-2;-3\right)\right\}\)
b) Ta có: (x-2)(y+1)=5
nên x-2 và y+1 là các ước của 5
\(\Leftrightarrow x-2;y+1\in\left\{1;-1;5;-5\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}x-2=1\\y+1=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2=5\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=0\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}x-2=-1\\y+1=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-6\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}x-2=-5\\y+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(7;0\right);\left(1;-6\right);\left(-3;-2\right)\right\}\)
>= là lớn hơn hoặc bằng nha
a) Do |2 - x| >= 0; |y + 5| >= 0 => 2.|y + 5| >= 0
Mà |2 - x| + 2.|y + 5| = 0
=> |2 - x| = 0; 2.|y + 5| = 0
=> 2 - x = 0; |y + 5| = 0
=> x = 2; y + 5 = 0
=> x = 2; y = -5
b) Lí luận tương tự
=> x - y = 0; x - 1 = 0
=> x = 1; y = 1
Ủng hộ mk nha ☆_☆^_-
\(x\left(2y+3\right)=y+1\)
\(\Rightarrow y+1\)chia hết cho \(2y+3\)
\(\Rightarrow2y+2\)chia hết cho \(2y+3\)
\(\Rightarrow2y+3-1\)chia hết cho \(2y+3\)
\(\Rightarrow-1\)chia hết cho \(2y+3\)( Vì \(2y+3\)chia hết cho \(2y+3\))
\(\Rightarrow2y+3\in\)ƯC \(\left(-1\right)\)
\(\Rightarrow2y+3\in\left\{1;-1\right\}\)
TH1 :
\(2y+3=-1\)\(\Rightarrow y=-2\)\(\Rightarrow x=1\)
TH2 :
\(2y+3=1\)\(\Rightarrow y=-1\)\(\Rightarrow x=0\)
Vậy ( y ; x ) = ( - 2 ; 1 ) ; ( - 1 ; 0 )
x;y nguyên => x+1; y-2 nguyên
=> x+1; y-2 \(\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Ta có bảng
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
y-2 | -1 | -2 | 2 | 1 |
y | 1 | 0 | 4 | 3 |
\(\left(x+1\right)\left(y-2\right)=2\)
\(\Rightarrow\left(x+1\right);\left(y-2\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
TA CÓ BẢNG SAU:
\(x+1\) | \(-2\) | \(-1\) | \(1\) | \(2\) |
---|---|---|---|---|
\(y-2\) | \(-1\) | \(-2\) | \(2\) | \(1\) |
\(x\) | \(-3\) | \(-2\) | \(0\) | \(1\) |
\(y\) | \(1\) | \(0\) | \(4\) | \(3\) |
VẬY.........
HỌC TỐT