Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
Ta có :
\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\) và có GTNN
\(\Rightarrow\)\(x=1\)
\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)
Vậy \(M_{min}=-3\) khi \(x=1\)
a. Ta có:A = 2n-1 / n-3 = 2n-6+6-1 / n-3 = 2(n-3)+5 / n-3 = 2(n-3)/n-3+ 5/ n-3= 2+ (5/ n-3)
Để A nguyên thì 2+5/n-3 nguyên => 5/n-3 nguyên hay 5 chia hết cho n-3
=>n-3 thuộc ước của 5
=> n-3 thuộc {5, -5,1,-1}
=> n thuộc { 8, -2, 4, 2}
b. Để A có GTLN thì 5/n-3 có GTLN=> n-3 là số nguyên dương nhỏ nhất=> n - 3 = 1 => n = 1+3 = 4
=> A = 2 + 5 = 7
vậy GTLN của A = 7 khi n = 4
a) Để A có giá trị là số nguyên
Thì (2n—1) chia hết cho (n—3)
==> [2(n—3)+4) chia hết cho (n—3)
Vì (n—3) chia hết cho (n—3)
Nên (2+4) chia hết cho (n—3)
==> 6 chia hết cho (n—3)
==> (n—3) € Ư(6)
(n—3) €{1;-1;2;-2;3;-3;6;-6}
TH1: n—3=1
n=1+3
n=4
TH2: n—3=-1
n=-1+3
n=2
TH3: n—3=2
n=2+3
n=5
TH4: n—3=-2
n=-2+3
n=1
TH5:n—3=3
n=3+3
n=6
TH6: n—3=—3
n=-3+3
n=0
TH7: n—3=6
n=6+3
n=9
TH8: n—3=-6
n=-6+3
n=-3
Mình chỉ biết 1 câu thôi nha bạn
B=\(|x-1|+|x-2|\)
Để B nhỏ nhất =>\(|x-1|=0\) VÀ \(|x-2|=0\)
=> \(x-1=0\Rightarrow x=1\)
\(x-2=0\Rightarrow x=2\)
Kết luận bn tự ghi nha!!!HOK TOT~~~
để B=|x-1|+|x-2| đạt giá trị nhỏ nhất thì
|x-1| hoặc |x-2| =0
TH1
|x-2|=0 thì x=2
|x-1|=1
B=1
TH2
|x-1|=0 thì x=1
|x-2|=1
B=1
suy ra để B=|x-1|+|x-2| đạt giá trị nhỏ nhất thì x= 1 hoặc 2