Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(9^4.8+9^4.5\right):\left(9^2.\left(10-1\right)\right)\)
=\(9^4.13:9^3=13.9=117\)
b) 100-(75-25)=100-50=50
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
A) |x| = |-7|
|x| = 7
=>x=7 hoặc x=(-7)
Vậy x thuộc {7;-7}
B) |x+1|=2
=>x+1=2 hoặc x+1=(-2)
x=2-1 x=(-2)-1
x=1 x=(-3)
Vậy x thuộc {1;-3}
C) |x+1|=3
=>x+1=3 hoặc x+1=(-3)
Vì x+1<0
nên x+1=(-3)
x=(-3)-1
x=(-4)
D) x +|-2| = 0
x+2=0
x=0-2
x=(-2)
E) 4.(3x – 4) – 2 = 18
4.(3x – 4) =18+2
4.(3x – 4) =20
3x-4=20 : 4
3x-4=5
3x=5+4
3x=9
x=9 : 3
x=3
a) \(\left|x\right|=\left|-7\right|\)
\(\Rightarrow\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
Vậy ...
b) \(\left|x+1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Vậy ...
d) \(x+\left|-2\right|=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
Vậy ...
e) \(4\left(3x-4\right)-2=18\)
\(\Rightarrow4\left(3x-4\right)=20\)
\(\Rightarrow3x-4=5\)
\(\Rightarrow3x=9\Leftrightarrow x=3\)
Vậy ...
a) 25. (x-4) = 0
=> x -4 =0
x = 4
b) 43 - (24-x) = 20
43 - 24 + x = 20
19 + x = 20
x = 1
c) 3.(x+7) - 15 = 27
3.x + 21 - 15 = 27
3.x + 6 = 27
3.x = 21
x = 7
d)... bn ghi thiếu đề r
e) (2.x-6).(x-7) = 0
=> 2.x -6 = 0 => 2x = 6 => x = 3
x - 7 = 0 => x = 7
KL: x = 3 hoặc x = 7
phần d lm tương tự như phần f nha bn!
a,25(x-4)=0
x-4=0
x=4
b,43-(24-x)=20
43-24+x=20
x=1
c,3(x+7)-15=27
3x+21-15=27
3x=21
x=7
d,(x-4)(x-12)=0
x-4=0=>x=4
x-12=0=>x=12
e,(2x-6)(x-7)=0
2x-6=0=>x=3
x-7=0=>x=7
f,(5x-10)(2x-8)=0
5x-10=0=>x=2
2x-8=0=>x=2
a, => x^3 < 0 ; x-3 > 0 hoặc x^3 > 0 ; x-3 < 0
=> 0 < x < 3
b, => x^4.(2x-8) < 0
=> x^4.(x-4) < 0
Vì x^4 >= 0
=> x-4 < 0
=> x < 4
c, Vì x-1 < x+12
=> x-1 < 0 ; x+12 >0
=> -12 < x < 1
d, => x-12 > 0 ; x-1 > 0 hoặc x-12 < 0 ; x-1 < 0
=> x >12 hoặc x < 1
Tk mk nha
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
a) \(2.\left(x+\frac{2}{5}\right)+1\frac{1}{4}=\frac{11}{20}\)
\(2.\left(x+\frac{2}{5}\right)+\frac{5}{4}=\frac{11}{20}\)
\(2.\left(x+\frac{2}{5}\right)=\frac{-7}{10}\)
\(x+\frac{2}{5}=\frac{-7}{20}\)
\(x=\frac{-13}{20}\)
Vậy \(x=\frac{-13}{20}\)
b)\(x-1\frac{1}{8}-\frac{2}{3}x-\frac{5}{6}x=75\%\)
\(\left(x-\frac{2}{3}x-\frac{5}{6}x\right)-\frac{9}{8}=\frac{3}{4}\)
\(\frac{-1}{2}x-\frac{9}{8}=\frac{3}{4}\)
\(\frac{-1}{2}x=\frac{15}{8}\)
\(x=\frac{-15}{4}\)
Vậy \(x=\frac{-15}{4}\)
a) \(\left(x^2+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-1\\x^2=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\varnothing\\x=\pm2\end{cases}}}\)
Vậy x=\(\pm2\)
b) \(\left(x^3-27\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^3-27=0\\x^3+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^3=27\\x^3=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
Vậy x=3; x=-2
d) \(|3x+8|-|x-4|=0\)
\(\Leftrightarrow|3x+8|=|x-4|\)
\(\Leftrightarrow\orbr{\begin{cases}3x+8=x-4\\-3x-8=x-4\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-12\\-4x=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\x=-1\end{cases}}}\)
Vậy x=-6; x=-1