K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

Để giải phương trình $x^2 - 6y^2 = 1$ với $x, y$ là số nguyên tố, ta sử dụng phương pháp giải bằng phương pháp Pell như sau: Phương trình có dạng $x^2 - 6y^2 = 1$, tương đương với phương trình $x^2 - 6y^2 - 1 = 0$. Ta cần tìm nghiệm nguyên của phương trình này, có dạng $(x, y)$. Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 7, y_1 = 2$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên. $x_1 = 7, y_1 = 2$ $x_2 = 47, y_2 = 14$ $x_3 = 337, y_3 = 100$ $x_4 = 2387, y_4 = 710$ $x_5 = 16807, y_5 = 3982$ Vậy $(x, y) = (16807, 3982)$ là một nghiệm của phương trình $x^2 - 6y^2 = 1$, với $x$ và $y$ đều là số nguyên tố.

18 tháng 10 2023

cop

21 tháng 10 2023

\(x^2-6y^2=1\)
⇒ \(x^2-1=6y^2\)
⇒ \(y^2=\dfrac{x^2-1}{6}\)
Nhận thấy y2 ∈ Ư của x2 - 1⋮6
⇒ y2 là số chẵn
Mà y là số nguyên tố → y = 2
Thay vào, ta có:
\(x^2-1=4\cdot6=24\)
⇒ \(x^2=25\) → x = 5
Vậy x=5 ; y=2
xin tích
 

9 tháng 1

loading...

22 tháng 6 2018

Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự

Bài 2 : Ta có :

\(x^2-6y^2=1\)

\(\Rightarrow x^2-1=6y^2\)

\(\Rightarrow y^2=\frac{x^2-1}{6}\)

Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)

=> y2 là số chẵn

Mà y là số nguyên tố => y = 2

Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)

\(\Rightarrow x^2=25\Rightarrow x=5\)

Vậy x=5 ; y =2

18 tháng 10 2023

Sorry bạn nhưng mình từng giải bài này

Ta có phương trình đơn giản lại tương tự phương trình Pell như sau: $x^2 - 6y^2 = -1$ Ta có thể giải phương trình này bằng phương pháp Pell như sau: Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 5, y_1 = 1$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên cho đến khi tìm được một nghiệm thỏa mãn $x^2 - 6y^2 = -1$. $x_1 = 5, y_1 = 1$ $x_2 = 29, y_2 = 5$ $x_3 = 169, y_3 = 29$ $x_4 = 985, y_4 = 169$ $x_5 = 5741, y_5 = 985$ Vậy $(x, y) = (5741, 985)$ là một nghiệm của phương trình $x^2 - 6y^2 = -1$. Ta kiểm tra xem $x$ và $y$ có phải đều là số nguyên tố hay không. Ta nhận thấy rằng $x$ chia hết cho 7, do đó $x$ không phải là số nguyên tố. Tuy nhiên, ta thấy rằng $y$ là số nguyên tố. Vì vậy, đáp án của bài toán là $(x, y) = (5741, 985)$ với $y$ là số nguyên tố.