Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.
Mà $x-2< x+4$ nên $x-2=1$
$\Rightarrow x=3$
Thay vào $A$ thì $A=7$ là snt (thỏa mãn)
b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$
Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:
$x-2<0< x+4$
$\Rightarrow -4< x< 2$
$x$ nguyên nên $x=-3,-2,-1,0,1$
Để \(A\) là số nguyên thì \(\left(6x-4\right)⋮\left(2x+1\right)\)
Ta có :
\(6x-4=6x+3-7=3\left(2x+1\right)-7\) chia hết cho \(2n+1\) \(\Rightarrow\) \(\left(-7\right)⋮\left(2x+1\right)\) \(\Rightarrow\) \(\left(2x+1\right)\inƯ\left(-7\right)\)
Mà \(Ư\left(-7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
Vậy \(x\in\left\{0;-1;3;-4\right\}\)
Năm mới zui zẻ nhá ^^
ĐỂ BIỂU THỨC \(A=\frac{6x-4}{2x+1}\)NHẬN GIÁ TRỊ NGUYÊN
TA CÓ: \(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3.\left(2x+1\right)-7}{2x+1}\)
\(=\frac{3.\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)
ĐỂ \(A\inℤ\)
\(\Rightarrow\frac{7}{2x+1}\inℤ\)
\(\Rightarrow7⋮2x+1\)
\(\Rightarrow2x+1\inƯ_{\left(7\right)}=\left(1;-1;7;-7\right)\)
NẾU \(2x+1=1\Rightarrow2x=0\Rightarrow x=0\left(TM\right)\)
\(2x+1=-1\Rightarrow2x=-2\Rightarrow x=-1\left(TM\right)\)
\(2x+1=7\Rightarrow2x=6\Rightarrow x=3\left(TM\right)\)
\(2x+1=-7\Rightarrow2x=-8\Rightarrow x=-4\left(TM\right)\)
VẬY X = ....................
CHÚC BN HỌC TỐT!!!!!!
Ta có :
\(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)
Để A là số nguyên hay nói cách khác thì \(7⋮\left(2n+1\right)\)\(\Rightarrow\)\(\left(2n+1\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
Vậy \(x\in\left\{-4;-1;0;3\right\}\)
Chúc bạn học tốt ~
Điều kiên:2x+1 khác 0 nên x khác -1/2. Ta có: A=\(\frac{6x+3-7}{2x+1}=3+\frac{7}{2x+1}\) rồi suy ra 2x+1= 7, -7, 1, -1. Vậy x=3,-4,0,-1.
\(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3\left(2x+1\right)-7}{2x+1}=3-\frac{7}{2x+1}\)
Để \(3-\frac{7}{2x+1}\) là số nguyên <=> \(\frac{7}{2x+1}\) là số nguyên
=> 2x + 1 \(\in\) Ư(7) = { - 7; - 1; 1; 7 }
Ta có : 2x + 1 = - 7 <=> 2x = - 8 => x = - 4 (TM)
2x + 1 = - 1 <=> 2x = - 2 => x = - 1 (TM)
2x + 1 = 1 <=> 2x = 0 => x = 0 (TM)
2x + 1 = 7 <=> 2x = 6 => x = 3 (TM)
Vậy x = { - 4; - 1; 0; 3 }
\(\Leftrightarrow6x-4=\left(6x+3\right)-7\)
Để \(A\in Z\Leftrightarrow\left(6x+3\right)-7⋮2x+1\)
Mà \(6x+3⋮2x+4\Rightarrow7⋮2x+1\Rightarrow2x+1\inƯ\left(7\right)\)
\(\RightarrowƯ\left(7\right)=\left(7;1;-1;-7\right)\)
Nếu \(2x+1=7\Rightarrow x=3\)
Nếu \(2x+1=1\Rightarrow x=0\)
Nếu \(2x+1=-1\Rightarrow x=-1\)
Nếu \(2x+1=-7\Rightarrow x=-4\)
a) x khác 2
b) với x<2
c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)
x-2=(-7,-1,1,7)
x=(-5,1,3,9)
a) đk kiện xác định là mẫu khác 0
=> x-2 khác o=> x khác 2
b)
tử số luôn dương mọi x
vậy để A âm thì mẫu số phải (-)
=> x-2<0=> x<2
c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu
cụ thể
x^2-2x+2x-4+4+3
ghép
x(x-2)+2(x-2)+7
như vậy chỉ còn mỗi số 7 không chia hết cho x-2
vậy x-2 là ước của 7=(+-1,+-7) ok
Giả sử:
x² + x + 6 = k² ( k nguyên dương)
=> 4x² + 4x + 24 = 4k² => 4x² + 4x + 24 = 4k²
=> -(2x+1)² + 4k² = 23 => -(2x+1)² + 4k² = 23
=>(-2k+2x+1)(2k+2x+1) = -23 =>(-2k+2x+1)(2k+2x+1) = -23
Do x, k đều nguyên và k nguyên dương nên 2x + 2k + 1 > 2x +1-2k do đó chỉ xảy ra các trường hợp
TH1: -2k+2x+1 = -1 và 2k+2x+1 = 23
=> x = 5 và k = 6
TH2: -2k+2x+1 = -23 và 2k + 2x +1= 1
=> x = - 6 và k = 6 (loại vì k∈N)
Vậy x = 5
sửa lại đề nhé A=\(x^2\) -6x-x