Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\frac{a}{b}\)cùng dấu thì lớn hơn 0
\(\frac{a}{b}\)khác dấu thì bé hơn 0
2. mik không hiểu đề lắm
1:a/b cùng đấu thì lớn hơn o
a/b khác dấu thì bé hơn o
2: có x =a/m=a+a/2m, y =b/m=b+b/2m
Vì x<y =>a<b=>a+a<a+b=>a+a/2m<a+b/2m=>x<z(1)
Vì a<b =>a+b<b+b=>a+b/2m<b+b/2m=>z<y
Từ đó =>x<z<y
a) \(n^2+n-17⋮n+5\)
\(\Leftrightarrow n\left(n+5\right)-\left(4n+17\right)⋮n+5\)
Mà \(n\left(n+5\right)⋮n+5\)
\(\Rightarrow4n+17⋮n+5\)
\(\Rightarrow4\left(n+5\right)-3⋮n+5\)
mà \(4\left(n+5\right)⋮n+5\)
\(\Rightarrow3⋮n+5\)
\(\Rightarrow n+5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lamf noots
b)\(n^2+3n-5⋮n-2\)
\(\Leftrightarrow n^2+2n+n-5⋮n-2\)
\(\Leftrightarrow n\left(n+2\right)+\left(n-2\right)-3⋮n-2\)
Vì \(\hept{\begin{cases}n\left(n-2\right)⋮n-2\\\left(n-2\right)⋮\left(n-2\right)\end{cases}}\)nên \(3⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
\(n\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n-2\) | \(3\) | \(1\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{3;1;5;-1\right\}\)
a) \(\left(x-\frac{2}{5}\right).\left(x+\frac{3}{7}\right)<0\)
\(\Rightarrow x-\frac{2}{5}<0\) hoặc \(x-\frac{2}{5}>0\)
\(x+\frac{3}{7}>0\) \(x+\frac{3}{7}<0\)
\(\Rightarrow x<\frac{2}{5}\) hoặc \(x>\frac{2}{5}\)
\(x>-\frac{3}{7}\) \(x<-\frac{3}{7}\)
\(\Rightarrow-\frac{3}{7} hoặc \(x\in rỗng\)
vậy \(-\frac{3}{7}
b) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)\le x\le\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)\)
\(\frac{-1}{12}\le x\le\frac{1}{4}\)
\(\frac{-1}{12}\le x\le\frac{3}{12}\)
\(\Rightarrow x=\frac{-1}{12};0;\frac{1}{12};\frac{2}{12};\frac{3}{12}\)
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................