K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

Bài 1: p = 4

Bài 2: p =3

Bài 3. p = 2

Bài 4: ....... tự giải đi

Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây

16 tháng 2 2015

p+2 = p-1+3 ; p+4=p+1+3

Xét 3 số liên tiếp p-1 ; p ; p+1 có 1 và chỉ 1 số chia hết cho 3.

nếu p-1 ; p+1 chia hết cho 3 thì p+2 ; p+4 chia hết cho 3. điều này vô lý vì chúng là số nguyên tố. Vậy chỉ có p chia hết cho 3, mà p nguyên tố nên p = 3

8 tháng 1 2016

p = 5          tick nha bạn

8 tháng 1 2016

 

p = 5 nha bạn

13 tháng 11 2018

a) +, Nếu p = 2

=> p + 1 = 3 ( là số nguyên tố)

  +, Nếu p > 2 ( p là số nguyên tố)

=> p = 2k + 1   ( k thuộc N* )

=> p + 1 = 2k + 1 + 1 = 2k + 2 chia hết cho 2 ( loại )

    Vậy p = 2

b) +, Nếu p = 2 

=> p + 2 = 4       chia hết cho 2, chia hết cho 4 ( loại )

   +, Nếu p = 3

=> p + 2 = 5 ( là số nguyên tố )

     p + 4 = 7  ( là số nguyên tố)

  +, Nếu p > 3  ( p là số nguyên tố )

=> p = 3k + 1  hoặc p = 3k + 2  ( k thuộc N*)

    TH1: p = 3k + 1

=> p + 2 = 3k + 1 + 3 = 3k + 3   chia hết cho 3 ( loại )

    TH2: p = 3k + 2

=> p + 4 = 3k + 2 + 4 = 3k + 6   chia hết cho 3 ( loại )

     Vậy p = 3

 c,

Tương tự

13 tháng 11 2018

a, Xét P=2 thì P+1=3 => P=2 thỏa mãn

Xét P>2 thì P=2k+1 => P+1=2k+1+1=2k+2 chia hết cho 2 và >2 vì P là SNT > 2=>p=2k+1 ko thỏa mãn

b,Xét P=2 thì P+2=4 => P=2 ko thỏa mãn

Xét P=3 thì P+2=5 và P+4=7 đều là SNT => P=3 thỏa mãn 

Xét P>3 thì P=3k+1 hoặc 3k+2

bạn thay vào như phần a

c, làm tương tự 2 TH trên

16 tháng 11 2014

neu p=2 thi cac so tren la hop so (loai)

neup=3 thi p+6=9 (la hop so,loai)

neu p=5 thi cac so tren deu la so ngto (chon)

Neu p > 5 thi p co dang :5k+1;5k+2;5k+3;5k+4 (k thuoc N)

voi p=5k+1 thi p+14=5k+15 chia het cho 5(la hop so,loai)

.....p=5k+2....p+8=5k+10..............................................

......p=5k+3...p+12=5k+15............................................

......p=5k+4...p+6=5k+10..............................................

suy ra p chi co the bang 5

vay p=5

17 tháng 11 2014

mọi số tự nhiên đều viết được dưới dạng 5k,5k+1,5k+2,5k+3,5k+4

nếu p = 5k+1 suy ra p+14=5p+15=5(p+3)chia hết cho 5 (loại)

nếu p = 5k+2 suy ra p+8=5p+10=5(p+2) chia hết cho 5 (loại) 

nếu p = 5k+3 suy ra p+12=5p+15=5(p+3) chia het cho 5 (loại)

nếu p = 5k+4 suy ra p+6= 5p+10=5(p+2)chia hết cho 5 (loại)

vậy p chỉ có thể bằng 5k.mà p là nguyên tố nên p =5.

vậy p=5

Bài 1: 

Trường hợp 1: p=2 thì p+2=4(loại)

Trường hợp 2: p=3 thì p+2=5; p+6=9(loại)

Trường hợp 3: p=5

=>p+2=5; p+6=11; p+8=13(nhận)