Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
Để P là số nguyên thì \(1⋮n-1\)\(\Rightarrow n-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{1;2\right\}\)
mà \(n\ne1\)\(\Rightarrow n=2\)
Vậy n = 2
ta có n-1 / hết cho n-1 , 2n chia hết cho n, gọi n-1 =k . 2n-1 = 2k ta có 2k/k=k và k thuộc B2 vậy ta có bội 2 chia hết cho k nên phải gấp đô k nên k là một sô bất kì vậy n nên n cx là một số bất kì
Để P nguyên thì 2n - 1 ⋮ n - 1
<=> 2n - 2 + 1 ⋮ n - 1
<=> 2( n - 1 ) + 1 ⋮ n - 1
Vì 2( n - 1 ) ⋮ n - 1
=> 1 ⋮ n - 1
=> n - 1 thuộc Ư(1) = { 1; -1 }
=> n thuộc { 2; 0 }
chẹm tao cho lắm cần tao banh lồn cho mày chịch để tao làm phim sex không tao là tokuda đây nhưng tui là tokuda nữ
tìm các số nguyên n sao cho biểu thức sau là số nguyên:
P=\(\frac{2n-1}{n-1}\)
giúp mk nha các bạn..<3
Để P là số nguyên
=> 2n-1 Chia hết cho n-1
2n-2+1 Chia hết cho n-1
2(n-1) +1 Chia hết cho n-1
Có 2(n-1) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 \(\in\)Ư(1)
Lập bảng rồi bạn tự tính nhé
Trùng tên. Mk thấy tên Ngọc Nhi ít người có lắm mak. Mk cũng tên lak Ngọc Nhi
Bấm vô đây để tham khảo:
Câu hỏi của Phạm Võ Thanh Trúc - Toán lớp 6 - Học toán với OnlineMath
Ta có: P = \(\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
Để P \(\in\)Z <=> 1 \(⋮\)n - 1 <=> n - 1 \(\in\)Ư(1) = {1; -1}
Với n - 1 = 1 => n = 1 + 1 = 2
n - 1 = -1 => n = -1 + 1 = 0
Vậy ...
\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=2+\frac{1}{n-1}\)
\(\Rightarrow P\in Z\Leftrightarrow2+\frac{1}{n-1}\in Z\Leftrightarrow\frac{1}{n-1}\in Z\Leftrightarrow1⋮n-1\Leftrightarrow n-1\inƯ\left(1\right)\)
\(\Rightarrow n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
\(\frac{2n-1}{n-1}\in Z\)
\(\Rightarrow2n-1⋮n-1\)
\(\Rightarrow\left(2n-1\right)-\left(n-1\right)⋮\left(n-1\right)\)
\(\Rightarrow2⋮\left(n-1\right)\)
Bảng:
n-1 | -1 | 1 | 2 | -2 |
n | 0 | 2 | 3 | -1 |
Vậy \(n\in\left\{0;-1;2;3\right\}\)
\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\)
Để P nguyên thì n-1 thuộc Ư(1)={1;-1}
Ta có: n-1=1 => n=2
n-1=-1 => n=0
Vậy n={2;0}
TA CÓ:\(P=\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\)
Để P nguyên thì n-1 thuộc Ư(1)={1;-1}
T/hợp 1: n-1=1
Thì n=1+1=2
T/hợp 2: n-1=-1 =>n=0
Vậy n{2;0}
P = \(\frac{2n-1}{n-1}\)= \(\frac{2\left(n-1\right)+1}{n-1}\)= \(2+\frac{1}{n-1}\)
Để P nguyên thì \(\frac{1}{n-1}\)là số nguyên
hay n - 1 \(\inƯ\left(1\right)=\left\{\pm1\right\}\)
Nếu: n - 1 = 1 thì n = 2
Nếu: n - 1 = -1 thì n = 0
Vậy n = 0 hoặc n = 2
\(P=\frac{2n-1}{n-1}\)
Để P nguyên
=> \(\frac{2n-1}{n-1}\)nguyên
<=> 2n - 1 chia hết cho n - 1
<=> 2n - 2 + 1 chia hết cho n - 1
<=> 2(n - 1) + 1 chia hết cho n - 1
Có 2(n - 1) chia hết cho n - 1
=> 1 chia hết cho n - 1
=> n - 1 thuộc Ư(1)
=> n - 1 thuộc {1; -1}
=> n thuộc {2; 0}
(2n-1)/(n-1) là số nguyên thì
2n-1 chia hết cho n-1
n-1 chia hết cho n-1 =>2(n-1) chia hết cho n-1
=>2n-1-2(n-1) chia hết cho n-1
=>1 chia hết cho n-1
=> n-1 thuộc ước của 1=>n=0 hoặc n=2