Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)
Để \(\frac{3n+7}{3n-1}\inℕ^∗\)thì \(3n+7⋮3n-1\)
\(\Leftrightarrow3n-1+8⋮3n-1\Leftrightarrow8⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
3n - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
3n | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
n | 2/3 ktm | 0 | 1 | -1/3 ktm | 5/3 ktm | -1 | 3 | -7/3 ktm |
a) n phải khác 2
b) để A nguyên thì
1 chia hết cho 2-n
=> 2-n thuộc tập ước của 1
=> hoặc 2-n=1 =>n=1
hoặc 2-n=-1 =>n=3
hk tốt
a) Để A là phân số thì \(2-n\ne0\)
\(\Leftrightarrow n\ne2\)
b) Để A nguyên thì \(1⋮\left(2-n\right)\)
\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)
Lập bảng:
\(2-n\) | \(1\) | \(-1\) |
\(n\) | \(1\) | \(3\) |
Vậy n = 1 hoặc n = 3 thì A nguyên
Ta có :
\(\left|2a-1\right|=\orbr{\begin{cases}2a-1\left(a>0\right)\\1-2a\left(a=0\right)\end{cases}}\)
Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
+) Xét \(a>0\) ta có :
\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(A=\frac{40\left(2a-1\right)+15}{10a-5}\)
\(A=\frac{80a-40+15}{10a-5}\)
\(A=\frac{80a-40}{10a-5}+\frac{15}{10a-5}\)
\(A=\frac{8\left(10a-5\right)}{10a-5}+\frac{15}{10a-5}\)
\(A=8+\frac{15}{10a-5}\)
Để A nguyên thì \(\frac{15}{10a-5}\) nguyên hay \(15⋮\left(10a-5\right)\)\(\Rightarrow\)\(\left(10a-5\right)\inƯ\left(15\right)\)
Mà \(Ư\left(15\right)=\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Suy ra :
\(10a-5\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(a\) | \(\frac{3}{5}\) | \(\frac{2}{5}\) | \(\frac{4}{5}\) | \(\frac{1}{5}\) | \(1\) | \(0\) | \(2\) | \(-1\) |
Mà \(a\inℕ\left(a>0\right)\) nên \(a\in\left\{-1;0;1;2\right\}\)
+) Xét \(a=0\) ta có :
\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(A=\frac{40\left|2.0-1\right|+15}{10.0-5}\)
\(A=\frac{40\left|0-1\right|+15}{0-5}\)
\(A=\frac{40+15}{-5}\)
\(A=-11\) ( A nguyên )
Vậy \(a\in\left\{-1;0;1;2\right\}\)
Chúc bạn học tốt ~
Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(\left|2a-1\right|=2a-1\)
\(\Rightarrow A=\frac{40.\left(2a-1\right)+15}{10a-5}=\frac{80a-40+15}{10a-5}=\frac{80a-25}{10a-5}\)
Để biểu thức A nhận giá trị nguyên thì \(80a-25⋮10a-5\)
Ta có: \(8\left(10a-5\right)⋮10a-5\)\(\Rightarrow80a-40⋮10a-5\)
\(\Rightarrow80a-25-\left(80a-40\right)⋮10a-5\)
\(\Rightarrow15⋮10a-5\Rightarrow\)\(10a-5\)thuộc Ư(15)
\(Ư\left(15\right)=\left\{1;3;5;15;-1;-3;-5;-15\right\}\)
\(\Rightarrow10a-5\in\left\{1;3;5;15;-1;-3;-5;-15\right\}\)
\(\Rightarrow10a\in\left\{6;8;10;4;3;0;-10\right\}\Rightarrow a\in\left\{\frac{3}{5};\frac{4}{5};1;\frac{2}{5};\frac{3}{10};0;-1\right\}\)
Do \(a\in N\)nên \(a\in\left\{1;0\right\}\)
A nguyen suy ra 2n+3 chia het cho n-2
suy ra 2n-4+7 chia het cho n-2 suy ra 2[n-2] +7 chia het cho n-2 suy ra 7 chia het cho n-2
n thuoc tap hop [3 ,1 ,9,-5]
hoc tot
b.
\(A=\frac{5}{n-3}\)
Để A nguyên=> \(\frac{5}{n-3}\)nguyên=> 5\(⋮n-3\)=> n-3 thuộc Ư(5)={+-5}
Ta có bảng sau:
n-3 -5 -1 1 5
n -2 2 4 8
Điều kiện xác định : \(n\ne3\)
a, Để biểu thức A là phân số \(\Rightarrow n-3\neƯ\left(5\right)\)
\(\Leftrightarrow n-3\ne\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow n\ne\left\{\pm2;4;8\right\}\)
Vậy để biểu thức A là phân số \(\Leftrightarrow n\ne\left\{\pm2;4;8\right\}\)
b, Để biểu thức A là số nguyên \(\Rightarrow5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow n\in\left\{\pm2;4;8\right\}\)
Vậy \(\Leftrightarrow n\in\left\{\pm2;4;8\right\}\)biểu thức A là số nguyên
A = 3n - 6061/x - 2020
để A nguyên
=> 3x - 6061 chia hết cho x - 2020
=> 3x - 6060 - 1 chia hết cho x - 2020
=> 1 chia hết cho x - 2020
=> x - 2020 thuộc {-1; 1}
=> x - 2020 thuộc {2019; 2021}