\(A=\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên

\(\Rightarrow\)12\(⋮\)3n-1

\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!

b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên 

\(\Rightarrow\)2n+3\(⋮\)7

\(\Rightarrow\)2n+3=7k  

\(\Rightarrow n=\frac{7k-3}{2}\)

25 tháng 4 2021

Để \(\frac{3n+7}{3n-1}\inℕ^∗\)thì \(3n+7⋮3n-1\)

\(\Leftrightarrow3n-1+8⋮3n-1\Leftrightarrow8⋮3n-1\)

\(\Rightarrow3n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

3n - 11-12-24-48-8
3n203-15-39-7
n2/3 ktm1-1/3 ktm5/3 ktm-13-7/3 ktm 
25 tháng 4 2021

Cảm ơn✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓ nhé! Love you

a) Để A nhận giá trị nguyên thì: \(-n-7⋮n-2\)

\(\Rightarrow-n-7+n-2⋮n-2\)

\(\Rightarrow-9⋮n-2\Rightarrow n-2\inƯ\left(-9\right)\)

Mà \(Ư\left(-9\right)=\left\{-1;-9;1;9\right\}\)

\(\Rightarrow n-2\in\left\{-1;-9;1;9\right\}\)

\(\Rightarrow n\in\left\{1;-7;3;11\right\}\)

b) Để B có giá trị nguyên thì :\(n-6⋮n+5\)

\(\Rightarrow n-6-\left(n+5\right)⋮n+5\)

\(\Rightarrow n-6-n-5⋮n+5\)

\(\Rightarrow-11⋮n+5\Rightarrow n+5\inƯ\left(-11\right)\)

Mà \(Ư\left(-11\right)=\left\{-11;-1;1;11\right\}\)

\(\Rightarrow n+5\in\left\{-1;-11;1;11\right\}\)

\(\Rightarrow n\in\left\{-6;-16;-4;6\right\}\)

(Mấy dạng này bạn cứ làm sao để bỏ n là được)

13 tháng 2 2020

Cảm ơn bạn .Mình sẽ

5 tháng 4 2019

A nguyen suy ra 2n+3 chia het cho n-2 

suy ra 2n-4+7 chia het cho n-2 suy ra 2[n-2] +7 chia het cho n-2 suy ra 7 chia het cho n-2

n thuoc tap hop [3 ,1 ,9,-5]

hoc tot

23 tháng 4 2018

Ta có : 

\(\left|2a-1\right|=\orbr{\begin{cases}2a-1\left(a>0\right)\\1-2a\left(a=0\right)\end{cases}}\)

Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\) 

+) Xét \(a>0\) ta có : 

\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(A=\frac{40\left(2a-1\right)+15}{10a-5}\)

\(A=\frac{80a-40+15}{10a-5}\)

\(A=\frac{80a-40}{10a-5}+\frac{15}{10a-5}\)

\(A=\frac{8\left(10a-5\right)}{10a-5}+\frac{15}{10a-5}\)

\(A=8+\frac{15}{10a-5}\)

Để A nguyên thì \(\frac{15}{10a-5}\) nguyên hay  \(15⋮\left(10a-5\right)\)\(\Rightarrow\)\(\left(10a-5\right)\inƯ\left(15\right)\)

Mà \(Ư\left(15\right)=\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

Suy ra : 

\(10a-5\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(a\)\(\frac{3}{5}\)\(\frac{2}{5}\)\(\frac{4}{5}\)\(\frac{1}{5}\)\(1\)\(0\)\(2\)\(-1\)

Mà \(a\inℕ\left(a>0\right)\) nên \(a\in\left\{-1;0;1;2\right\}\)

+) Xét \(a=0\) ta có : 

\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(A=\frac{40\left|2.0-1\right|+15}{10.0-5}\)

\(A=\frac{40\left|0-1\right|+15}{0-5}\)

\(A=\frac{40+15}{-5}\)

\(A=-11\) ( A nguyên ) 

Vậy \(a\in\left\{-1;0;1;2\right\}\)

Chúc bạn học tốt ~ 

23 tháng 4 2018

Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)

\(\left|2a-1\right|=2a-1\)

\(\Rightarrow A=\frac{40.\left(2a-1\right)+15}{10a-5}=\frac{80a-40+15}{10a-5}=\frac{80a-25}{10a-5}\)

Để biểu thức A nhận giá trị nguyên thì \(80a-25⋮10a-5\)

Ta có: \(8\left(10a-5\right)⋮10a-5\)\(\Rightarrow80a-40⋮10a-5\)

\(\Rightarrow80a-25-\left(80a-40\right)⋮10a-5\)

\(\Rightarrow15⋮10a-5\Rightarrow\)\(10a-5\)thuộc Ư(15)

\(Ư\left(15\right)=\left\{1;3;5;15;-1;-3;-5;-15\right\}\)

\(\Rightarrow10a-5\in\left\{1;3;5;15;-1;-3;-5;-15\right\}\)

\(\Rightarrow10a\in\left\{6;8;10;4;3;0;-10\right\}\Rightarrow a\in\left\{\frac{3}{5};\frac{4}{5};1;\frac{2}{5};\frac{3}{10};0;-1\right\}\)

Do \(a\in N\)nên \(a\in\left\{1;0\right\}\)

\(\left(3x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)

\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)

27 tháng 12 2018

a, ĐỂ \(\frac{24}{2n+5}\)là số nguyên 

\(\Rightarrow24⋮2n+5\Rightarrow2n+5\inƯ\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

2n + 5 = 1 => 2n = -4 => n = -2 

2n + 5 = -1 => n = -3 

... tương tự thay vào nhé ! 

a)      n phải khác 2

b)     để A nguyên thì 

1 chia hết cho 2-n

=> 2-n thuộc  tập ước của 1 

=> hoặc 2-n=1 =>n=1

hoặc 2-n=-1 =>n=3

hk tốt

1 tháng 5 2019

a) Để A là phân số thì \(2-n\ne0\)

\(\Leftrightarrow n\ne2\)

b) Để A nguyên thì \(1⋮\left(2-n\right)\)

\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)

Lập bảng:

\(2-n\)\(1\)\(-1\)
\(n\)\(1\)\(3\)

Vậy n = 1 hoặc n = 3 thì A nguyên