Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)
=> \(\frac{1}{x}=\frac{1}{6}-\frac{y}{3}\)
=> \(\frac{1}{x}=\frac{1-2y}{3}\)
=> x(1 - 2y) = 3 = 1 . 3 = 3.1 = (-1) . (-3) = (-3) . (-1)
Lập bảng :
1 - 2y | 1 | -1 | 3 | -3 |
x | 3 | -3 | 1 | -1 |
y | 0 | 1 | -1 | 2 |
Vậy ...
\(\frac{1}{x}+\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{3}{3x}+\frac{xy}{3x}=\frac{1}{6}\)
\(\Leftrightarrow\frac{3+xy}{3x}=\frac{1}{6}\)
\(\Leftrightarrow6\left(3+xy\right)=3x\)
\(\Leftrightarrow2\left(3+xy\right)=x\)
\(\Leftrightarrow6+2xy=x\)
\(\Leftrightarrow6=x-2xy\)
\(\Leftrightarrow6=x\left(1-2y\right)\)
\(\Rightarrow\hept{\begin{cases}x\\1-2y\end{cases}}\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
\(x\) | \(-6\) | \(-3\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(1-2y\) | \(-1\) | \(-2\) | \(-3\) | \(-6\) | \(6\) | \(3\) | \(2\) | \(1\) |
\(y\) | \(1\) | \(\varnothing\) | \(2\) | \(\varnothing\) | \(\varnothing\) | \(-1\) | \(\varnothing\) | \(0\) |
Vậy \(x,y\in\left\{\left(-6;-1\right);\left(-3;2\right);\left(3;-1\right);\left(1;0\right)\right\}\)
a: \(B=3+3^2+3^3+...+3^{60}\)
\(=3\left(1+3+3^2+...+3^{59}\right)⋮3\)
=>B là hợp số
b: \(x^3+5^y=133\)
=>\(\left\{{}\begin{matrix}x^3< 133\\5^y< 133\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \sqrt[3]{133}\simeq5,1\\y< log_5133\simeq3,03\end{matrix}\right.\)
mà x,y là các số nguyên dương
nên \(\left\{{}\begin{matrix}x\in\left\{1;2;3;4;5\right\}\\y\in\left\{1;2;3\right\}\end{matrix}\right.\)
mà \(x^3+5^y=133\)
nên x=2 và y=3
Vì x, y, z là các số nguyên dương nên x,y,z \(\ge1\)
Ta có
\(x^2+y^3+z^4=90\)
\(\Rightarrow z^4< 90\)
Ta thấy rằng \(\hept{\begin{cases}4^4=256>90\\3^4=81< 90\end{cases}}\)nên z không thể lớn hơn 4 được
Hay z nhận các giá trị là 1, 2, 3
Với z = 3 thì
\(x^2+y^3=90-3^4=9\)
Tương tự như trên ta cũng thấy được: y chỉ thể nhận các giá trị 1,2
Thế vô lần lược tìm được: y = 2, x = 1
Xét lần lược các trường hợp của z sẽ tìm được các nghiêm còn lại
Các bộ số cần tìm là: \(\left(x,y,z\right)=\left(1,2,3\right);\left(5,4,1\right);\left(9,2,1\right)\)
Mình chỉ hướng dẫn bạn cách làm thôi nhé.
Vì x,y,z là các số nguyên dg nên x,y,z >/1
Ta có : x2 +y3 +z4 = 90
Suy ra z4 < 90
Ta thấy rằng {42 = 256 > 90 , 34 = 81 < 90 nên z ko thể >4
Hay z nhận các gt là 1,2,3
Với z=3 thì :
x2
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{7}{10}\left(x,y\inℕ^∗\right)\\ \dfrac{x+y}{xy}=\dfrac{7}{10}\\ 10\left(x+y\right)=7xy\\ 10x+10y-7xy=0\\ 70x+70y-49xy=0\\ 7x\left(10-7y\right)+70y=0\\ 7x\left(10-7y\right)-10\left(10-7y\right)+100=0\\ \left(10-7y\right)\left(7x-10\right)=-100\\ \left(7y-10\right)\left(7x-10\right)=100\)
Do \(x,y\inℕ^∗\) nên \(7y-10\), \(7x-10\) \(\inℤ\) và \(7y-10,7x-10\ge7.1-10=-3\)
Mà : 100=1.100=(-1).(-100)=2.50=(-2).(-50)=4.25=(-4).(-25)=5.20=(-5).(-20)=10.10=(-10).(-10)
Lập bảng giá trị :
7x-10 | 1 | 100 | 2 | 50 | 4 | 25 | 5 | 20 | 10 |
7y-10 | 100 | 1 | 50 | 2 | 25 | 4 | 20 | 5 | 10 |
x | 11/7(Loại) | 110/7(Loại) | 12/7(Loại) | 60/7(Loại) | 2(Nhận) | 5(Nhận) | 15/7(Loại) | 30/7(Loại) | 20/7(Loại) |
y | 5(Nhận) | 2(Nhận) |
Vậy \(\left(x;y\right)=\left(2;5\right);\left(5;2\right)\)
Do x,y bình đẳng như nhau,giả sử \(x\ge y\)
Khi đó:\(100=x^y+y^x\ge y^y+y^y=2y^y\)
\(\Rightarrow50\ge y^y\)
Với \(y>3\Rightarrow50\ge y^y>y^3\)
\(\Rightarrow4>\sqrt[3]{50}>y\)
\(\Rightarrow3< y< 4\left(KTM\right)\)
\(\Rightarrow y\le3\Rightarrow y\in\left\{1;2;3\right\}\)
Với \(y=1\)
\(\Rightarrow100=x^y+y^x=x+1^x=x+1\)
\(\Rightarrow x=99\left(TM\right)\)
Với \(y=2\)
\(\Rightarrow100=x^2+2^x\)
\(\Rightarrow2^x=100-x^2< 100\)
\(\Rightarrow x< 7\)
Mà x chẵn \(\Rightarrow x\in\left\{2;4;6\right\}\)
Thử vào thấy x=6 thỏa mãn.
Với \(y=3\)
\(\Rightarrow100=x^3+3^x\)
\(\Rightarrow x^3=100-3^x\)
\(\Rightarrow x< 5\)
Mà \(x\ge y\Rightarrow3\le x< 5\)
\(\Rightarrow x=3\left(h\right)x=4\)
Thử vào ta thấy không có x thỏa mãn.
Vậy các cặp số \(\left(x;y\right)\) cần tìm là:\(\left(99;1\right);\left(6;2\right)\) và các hoán vị của chúng
P/S:\(\left(h\right)\) là hoặc.
Ta có : 2 số x và y bình đẳng, không mất tính tổng quát
Các TH :
+ TH1: x = 1 => 1y + y1 = 100 => y + 1 = 100 => y = 99
Tìm được : x = 1 ; y = 99
+ TH2: x = 2 => 2y + y2 = 100 => 1 < y < 7 ( Nếu y = 1 thì lại rơi vào TH 1 )
Nếu : y = 6 => 26 + 62 = 100 ( T/m ) => Tìm đc x = 2; y = 6
y < 6 => 2y + y2 < 100 ( loại )
+ TH3 : x = 3 => 3y + y3 = 100 => 2 < y < 4
Nếu y = 3 => 33 + 33 = 54 < 100 ( loại )
+ TH4 : x \(\ge\)4 => 4y + y4 \(\ge\)44 + 44 = 512 > 100 ( y \(\ge\)4 vì nếu y < 4 sẽ rơi vào các TH trước )
Vậy ( x ; y ) = ( 1 ; 99 ) ; ( 99 ; 1 ) ; ( 2 ; 6 ) ; ( 6 ; 2 )