K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn bấm vào đúng 0 sẽ ra kết quả 

mình làm bài này rồi

5 tháng 2 2019

xy+yz+xz=3xyz

<=> xy+yz+xz/xyz = 3

<=> 1/x + 1/y + 1/z = 3

Do vai trò x ; y ; z như nhau , ko mất tính tổng quát , giả sử 

\(x\ge y\ge z\) . Khi đó , ta có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3.\frac{1}{x}\)

\(\Rightarrow3\le3.\frac{1}{x}\)

\(\Rightarrow1\le\frac{1}{x}\)

\(\Rightarrow x\le1\)

Mà x nguyên dương nên x = 1

Làm tương tự như vậy , ta có : y = 1 ; z = 1

Vậy .... 

5 tháng 2 2019

Sai rồi bạn , nếu làm như bạn , phải giả sử 

\(\ge y\ge x\)chứ 

:v 

12 tháng 8 2020

phải là tìm các số x,y,z thỏa mãn chứ bạn

12 tháng 8 2020

VÌ:    \(x^3+y^3+1-3xy=\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\)

Do:    \(x^3+y^3+1-3xy\)   là 1 số nguyên tố

=>   \(\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\)    là 1 số nguyên tố.

Do:   \(x+y+1>1\left(x,y\inℕ^∗\right)\)

=>   \(x^2+y^2-xy-x-y+1=1\)

<=> \(2x^2+2y^2-2xy-2x-2y+2=2\)

<=> \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

Do:   \(\left(x-y\right)^2;\left(x-1\right)^2;\left(y-1\right)^2\)    đều là các số chính phương.

=> Ta xét 3 trường hợp sau: 

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{cases}}\)   ;     \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=0\\\left(y-1\right)^2=1\end{cases}}\)    ;       \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=1\\\left(y-1\right)^2=0\end{cases}}\)

Do: x; y thuộc N* 

=> vs TH1 được: \(x=y=2\)

THỬ LẠI THÌ: \(x^3+y^3+1-3xy=8+8+1-12=5\)       (CHỌN)

TH2; TH3 tương tự ra       \(x=1;y=2\)   và     \(x=2;y=1\)

THỬ LẠI        \(\orbr{\begin{cases}x^3+y^3+1-3xy=1^3+2^3+1-3.1.2=4\\x^3+y^3+1-3xy=2^3+1^3+1-3.2.1=4\end{cases}}\)             (ĐỀU LOẠI HẾT).

VẬY \(x=y=2\)     là nghiệm duy nhất.

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ