K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2019

xy+yz+xz=3xyz

<=> xy+yz+xz/xyz = 3

<=> 1/x + 1/y + 1/z = 3

Do vai trò x ; y ; z như nhau , ko mất tính tổng quát , giả sử 

\(x\ge y\ge z\) . Khi đó , ta có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3.\frac{1}{x}\)

\(\Rightarrow3\le3.\frac{1}{x}\)

\(\Rightarrow1\le\frac{1}{x}\)

\(\Rightarrow x\le1\)

Mà x nguyên dương nên x = 1

Làm tương tự như vậy , ta có : y = 1 ; z = 1

Vậy .... 

5 tháng 2 2019

Sai rồi bạn , nếu làm như bạn , phải giả sử 

\(\ge y\ge x\)chứ 

:v 

NV
25 tháng 1

\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)

\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)

Cộng vế:

\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)

5 tháng 3 2019

\(P=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{xz}{y+1}\)

\(P=\frac{xy}{\left(x+z\right)+\left(y+z\right)}+\frac{yz}{\left(x+y\right)+\left(x+z\right)}+\frac{xz}{\left(x+y\right)+\left(y+z\right)}\)

\(P\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}+\frac{yz}{x+y}+\frac{yz}{x+z}+\frac{xz}{x+y}+\frac{xz}{y+z}\right)\)

\(P\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)

\("="\Leftrightarrow x=y=z=\frac{1}{3}\)

10 tháng 6 2020

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

10 tháng 6 2020

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

4 tháng 6 2023

Ta có \(27=xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow9\ge\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow729\ge\left(xyz\right)^2\) \(\Leftrightarrow27\ge xyz\) \(\Leftrightarrow27\left(xyz\right)^2\ge\left(xyz\right)^3\) \(\Leftrightarrow\sqrt{3}\sqrt[3]{xyz}\ge\sqrt{xyz}\) (lấy căn bậc 6 2 vế) \(\Leftrightarrow3\sqrt[3]{xyz}\ge\sqrt{3xyz}\)

Do đó \(x+y+z\ge3\sqrt[3]{xyz}\ge\sqrt{3xyz}\). ĐTXR \(\Leftrightarrow x=y=z=3\) 

AH
Akai Haruma
Giáo viên
25 tháng 5 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{x^2}{2}+8y^2\geq 4xy\)

\(\frac{x^2}{2}+8z^2\geq 4xz\)

\(2(y^2+z^2)\geq 4yz\)

\(4y^2+1\geq 4y\)

\(4y+2\geq 4\sqrt{2y}\)

Cộng theo vế các BĐT trên ta có:

\(P+3\geq 4(xy+yz+xz)=\frac{9}{4}.4=9\Rightarrow P\geq 6\)

Vậy $P_{\min}=6$. Giá trị này đạt tại $(x,y,z)=(2,\frac{1}{2}, \frac{1}{2})$

25 tháng 5 2021

Mấy bài như này có cách làm chung không ạ?Hay phải tự nháp...