Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a1 + a2 + ... + a9 = 90
Mà a1 - 1 ; a2 - 2 ; ... ; a9 - 9 tỉ lệ với 9 ; 8 ; 7 ; ... ; 2 ; 1
\(\Rightarrow\frac{a_1-1}{9}=\frac{a_2-2}{8}=\frac{a_3-3}{7}=...=\frac{a_9-9}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=\frac{a_3-3}{7}=...=\frac{a_9-9}{1}=\frac{\left(a_1-1\right)+\left(a_2-2\right)+\left(a_3-3\right)+...+\left(a_9-9\right)}{9+8+7+...+1}\)
\(=\frac{\left(a_1+a_2+a_3+...+a_9\right)-\left(1+2+3+...+9\right)}{9+8+7+...+1}=\frac{90-45}{45}=\frac{45}{45}=1\)
\(\frac{a_1-1}{9}=1\Rightarrow a_1-1=9\Rightarrow a_1=10\)
\(\frac{a_2-2}{8}=1\Rightarrow a_2-2=8\Rightarrow a_2=10\)
...
\(\frac{a_9-9}{1}=1\Rightarrow a_9-9=1\Rightarrow a_9=10\)
Vậy a1 = a2 = ... = a9 = 10
Các nhóm chữ số tỉ lệ với 1,2,3 là: (1,2,3),(2,4,6),(3,6,9)
Mà chia hết cho 8 nên các số đó có 2 chữ số cuối chia hết cho 4
=> có tận cùng: 12,24,64,36,32,96
=> Các đó là: 312,624,264,936,132,396
Xét tiếp, ta có các số sau thỏa mãn đề bài:312,624,264,936,132,396
các nhóm chữ số tỉ lệ với 1,2,3 là : ( 1,2,3 ),(2,4,6),(3,6,9)
mà chia hết cho 8 nên các số có 2 chữ số cuối chia hết cho 3
có tận cùng là : 12 , 26 , 64 , 32 , 36 , 96
các số đó là : 312 , 624 , 264 , 936 , 132 , 396
ta thấy có số 312 , 624 , 264 , 936 , 132 , 396 thỏa mãn
Bài 1:
\(\text{Giả sử: }\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=k\)
\(\Rightarrow x=2k;y=4k;z=6k\)
Thay vào: x-y +z= 2k- 4k+ 6k= 8
= 4k= 8
=> k= \(\frac{8}{4}=2\)
=> x= 2. 2= 4
y= 4. 2= 8
z= 6.2 = 12
Vậy \(\begin{cases}x=4\\y=8\\z=12\end{cases}\)
Bài 2:
Giải:
Gọi số học sinh 4 khối 6, 7, 8, 9 là a, b, c, d ( a,b,c,d thuộc N* )
Ta có: \(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}\) và a + b + c + d = 660
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{3,5}=\frac{c}{4,5}=\frac{d}{4}=\frac{a+b+c+d}{3+3,5+4,5+4}=\frac{660}{15}=44\)
+) \(\frac{a}{3}=44\Rightarrow a=132\)
+) \(\frac{b}{3,5}=44\Rightarrow b=154\)
+) \(\frac{c}{4,5}=44\Rightarrow c=198\)
+) \(\frac{d}{4}=44\Rightarrow d=176\)
Vậy khối 6 có 132 học sinh
khối 7 có 154 học sinh
khối 8 có 198 học sinh
khối 9 có 176 học sinh
Vì nếu mỗi số giảm tương ứng với số thứ tự của nó thì được các số mới lần lượt tỉ lệ với 9;8;7;...;3;2;1 nên
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=\frac{a_3-3}{7}=...=\frac{a_9-9}{1}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=\frac{a_3-3}{7}=...=\frac{a_9-9}{1}=\frac{\left(a_1-1\right)+\left(a_2-2\right)+\left(a_3-3\right)+...+\left(a_9-9\right)}{9+8+7+...+1}\)
\(=\frac{\left(a_1+a_2+a_3+...+a_9\right)-\left(1+2+3+...+9\right)}{9+8+7+...+1}=\frac{90-\left(1+9\right).9:2}{\left(9+1\right).9:2}=\frac{90-10.9:2}{10.9:2}=\frac{90-45}{45}=\frac{45}{45}=1\)
\(\Rightarrow\begin{cases}a_1-1=9\\a_2-2=8\\a_3-3=7...\\a_9-9=1\end{cases}\)\(\Rightarrow a_1=a_2=a_3=...=a_9=10\)
Vậy mỗi số đó có giá trị là 10