K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

+) \(x^2-4xy+5y^2=2\left(x-y\right)\Leftrightarrow x^2-2x\left(2y+1\right)+5y^2+2y=0\)

+) \(\Delta'=\left(2y+1\right)^2-5y^2-2y=-y^2+2y+1=-\left(y+1\right)^2+2\)

Do y nguyên và -(y+1)^2 >= -2 nên y+1 = 0, 1 hoặc -1 mà để delta chính phương thi y+1 = 1 hoặc -1 -> y = 0 hoặc -2
Từ đây thay lại vào và tìm được \(\left(x;y\right)\in\left\{\left(0;0\right)\right\}\)

23 tháng 7 2020

\(x^2-4xy+5y^2=2\left(x-y\right)\)

\(\Leftrightarrow x^2-4xy+5y^2-2x+2y=0\)

\(\Leftrightarrow\left(x-2y\right)^2+2\left(x-2y\right)+1+y^2-2y+1=2\)

\(\Leftrightarrow\left(x-2y-1\right)^2+\left(y-1\right)^2=2\)

vì x,y là số nguyên nên ta có các trường hợp sau

th1: \(\hept{\begin{cases}x-2y-1=1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)

th2 \(\hept{\begin{cases}x-2y-1=-1\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

th3 \(\hept{\begin{cases}x-2y-1=-1\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\end{cases}}}\)

th4 \(\hept{\begin{cases}x-2y-1=1\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}}\)

22 tháng 6 2015

1. x2-4xy + 5y2 = 100\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=100\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=0+10^2=6^2+8^2\)\(\Leftrightarrow\int^{x-2y=0}_{y=10}\)

hoặc \(\int^{x-2y=10}_{y=0}\)      hoặc \(\int^{x-2y=6}_{y=8}\)  hoặc \(\int^{x-2y=8}_{y=6}\)

từ đó ta tìm được (x;y)= ( 20;10);(10;0) ; ( 24;6) ; ( 20; 6)

2. 4x2 + 2y- 4xy + 20x - 6y + 29 = 0 \(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y^2-10y+25\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow4x^2-4x\left(y-5\right)+\left(y-5\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left(2x-y+5\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\int^{2x-y+5=0}_{y+2=0}\Leftrightarrow\int^{x=\frac{-7}{2}}_{y=-2}\) loại vì x, y nguyên

vậy phương trình đã cho không có nghiệm nguyên

 

AH
Akai Haruma
Giáo viên
14 tháng 1

Lời giải:
$x^2+5y^2+4xy=2023$
$\Leftrightarrow (x^2+4y^2+4xy)+y^2=2023$

$\Leftrightarrow (x+2y)^2+y^2=2023$

Ta biết rằng 1 scp khi chia cho $4$ dư $0$ hoặc $1$

Tức là $(x+2y)^2\equiv 0,1\pmod 4$ và $y^2\equiv 0,1\pmod 4$

$\Rightarrow (x+2y)^2+y^2\equiv 0,1,2\pmod 4$

Mà $2023\equiv 3\pmod 4$

Do đó không tồn tại $x,y$ nguyên để $(x+2y)^2+y^2=2023$

NV
18 tháng 2 2022

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;-3;1\right\}\)

Thế vào pt ban đầu tìm x nguyên tương ứng

18 tháng 2 2022

\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)

Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)

Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)

Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Thay y=0 vào pt (1) ta không tìm được x nguyên 

Thay y=-2 vào pt (1) ta không tìm được x nguyên 

Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)

Thay y=-3 vào pt (1) tìm được \(x=-6\)

Thay y=1 vào pt (1) tìm được \(x=2\)

26 tháng 9 2016

k mk nha

7 tháng 11 2019

\(x^2-4xy+5y^2=2\left(x-y\right)\)

\(\left(x-2y\right)^2-2\left(x-2y\right)+1+y^2-2y+1=2\)

\(\left(x-2y-1\right)^2+\left(y-1\right)^2=1^2+1^2\)

\(\left(x-2y-1\right)^2=1\)

\(\left(y-1\right)^2=1\)

\(y-\left(1^2-1\right)\)

\(y=2\left|x=1\right|\)

Hmmm....không chắc há cậu mik làm kiểu cô giao nên không có 4 đâu hem :)))) ???

:) 

29 tháng 11 2018

\(x^2+3y^2=4xy\Leftrightarrow x^2-xy+3y^2-3xy=0\)

\(\Leftrightarrow x\left(x-y\right)-3y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)

Do x>y>0 => x-y>0 => \(x-3y=0\Leftrightarrow x=3y\) Thay vào A

\(\Rightarrow A=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)