K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

26 tháng 1 2017

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

Bài 1: 

a: \(x^2+5x=x\left(x+5\right)\)

Để biểu thức này âm thì \(x\left(x+5\right)< 0\)

hay -5<x<0

b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)

\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)

3 tháng 10 2021

còn bài 2 nữa ạ.

11 tháng 8 2016

\(A=x^2+4x< 0\)

\(=>x^2< -4x\)

\(=>x< -4\)

\(\left(x-3\right)\left(x+7\right)< 0\)

\(=>x-3< 0< x+7\)hoặc \(x+7< 0< x-3\)

\(=>-7< x< 3\)

\(x^2+4x< 0\)

\(\Rightarrow x\left(x+4\right)< 0\)

Th1 : \(\hept{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -4\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x< 0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-4\end{cases}}}\)

Những câu còn lại tương tự thôi

17 tháng 1 2017

a) Ta có: A = x^2+4x

           =>A= x(×+4)

Để A có gtri dương=>x và ( x+4) cùng dấu

Xét x và x+4 có gtri dương

=>x lớn hơn  0     (1)

Xét x và x+4 có gtri âm

=>x bé hơn -4.       (2)

Từ (1) và (2) ta suy ra

Để A có gtri dương thì x phải lớn hơn 0 và bé hơn -4

b)

Ta có: B = (x-3)(x+7)

=> B = (x+(-3)) (x+7)

=> B = x^2+(-3)x+7x+(-21)

=> B =x(x+5)+(-21)

Để B có gtri dương => x(x+5)>21

Xét x = 1 => B=1(1+5)=6< 21( ko t/mãn)

Tương tự vs 2 ta cũng thấy ko thỏa mãn

Xét x =3=>B=3(3+5)=24>21( t/mãn)

Vậy để B có gtri dương thì x> 3

Còn câu c) thì tịttttttttttt..........(°¤°)

21 tháng 6 2017

C=(1/2-x).(1/3-x)     (1)

x\(-\infty\)                  1/3                1/2                     \(+\infty\)
1/2-x                    -                       -      0              +
1/3-x                    -          0           +                    +
(1/2-x).(1/3-x)                    +         0           -       0              +

(1) <=> x<1/3 hoac x>1/2

Vay voi x<1/3 va x>1/2 thi bieu thuc da cho co gia tri duong

21 tháng 6 2016

bài 1:

\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)

\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)

Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm

\(\Leftrightarrow\frac{1}{3}-x< 0\)

\(\Leftrightarrow x>\frac{1}{3}\)

Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương

bài 2:

a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0

+)Nếu x2-2<0

=>x2<2

=>x<\(\sqrt{2}\)

+)Nếu 5x<0

=>x<0

Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm

b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm

=>x-2<0 hoặc x-6<0

+)Nếu x-2<0

=>x<2

+)Nếu x-6<0

=>x<6

Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm

18 tháng 6 2018

a/ Ta có \(A=x^2+4x=x\left(x+4\right)\)

Để A > 0

=> \(x\left(x+4\right)>0\)

=> \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>0\\x>-4\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x< -4\end{cases}}\)

=> \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)

Vậy khi \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì A > 0.

b/ Ta có \(B=\left(x-3\right)\left(x+7\right)\)

\(B=x^2+7x-3x-21\)

\(B=x^2+4x-21\)

\(B=x^2+4x+4-25\)

\(B=\left(x+2\right)^2-25\)

Để B > 0

=> \(\left(x+2\right)^2-25>0\)

<=> \(\left(x+2\right)^2>25\)

<=> \(\orbr{\begin{cases}x+2>5\\x+2>-5\end{cases}}\)

<=> \(\orbr{\begin{cases}x>3\\x>-7\end{cases}}\)

Vậy khi \(\orbr{\begin{cases}x>3\\x>-7\end{cases}}\)thì B > 0.

c/ Ta có \(C=\left(\frac{1}{2}-x\right)\left(\frac{1}{3}-x\right)=\frac{1}{6}-\frac{1}{2}x-\frac{1}{3}x+x^2=\frac{1}{6}-\frac{5}{6}x^2+x^2=\frac{1}{6}-\frac{1}{6}x^2=\frac{1}{6}\left(1-x^2\right)\)

Để C > 0

<=> \(\frac{1}{6}\left(1-x^2\right)>0\)

<=> \(1-x^2>0\)

<=> \(x^2>1\)

<=> \(x>\pm1\)

Vậy khi \(\orbr{\begin{cases}x>1\\x>-1\end{cases}}\)thì C > 0.

24 tháng 11 2021

1) Xét rằng x > 7 <=> A < 0

Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến

A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1

Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6

25 tháng 11 2021

giúp mình gấp với ạ

25 tháng 11 2021

\(a,\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-2;1;2;5\right\}\\ b,=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\in Z\\ \Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\\ c,\Rightarrow x^2-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x^2\in\left\{2;4;8\right\}\\ \Rightarrow x^2=4\left(x\in Z\right)\\ \Rightarrow x=\pm2\)