Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 16a7b chia hết cho 2 và 5 => b=0
Ta có số chia hết cho 9 có tổng các chữ số chia hết cho 9
=> 1+6+7+0+a=14+a chia hết cho 9.Để 14+a chia hết cho 9 thì a=4
Vậy để 16a7b chia hết cho 2; 5 và 9 thì a=4; b=0
b) Số chia hết cho 2 mà chia 5 dư 3 thì có tận cùng bằng 8=> b=8
Vì 1a788 chia hết cho 9 => 1+a+7+8+8=24+a chia hết cho 9
Để 24+a chia hết cho 9 => a phải = 3
Vậy 1a78b=13788
c) Số chai hết cho 15 phải chia hết cho 3 và 5.
Số chia hết cho 18 phải chia hết cho 3 và 6.
Mà số chia hết cho 6 phải chia hết cho 3 và 2.
Số chia hết cho 45 phải chia hết 5 và 9.
Vì 175ab chia hết cho 2 và 5 => b=0
Ta có: 175a0 chia hết cho 3 và 9=> tổng các chữ số của chúng chia hết cho 9.
Vậy 1+7+5+a+0=13+a chai hết cho 9.
Để 13+a chia hết cho 9 thì a phải = 5.
Vậy 175ab=17550
d) Vì a-b=0 => a chỉ có thể = 4;5;6;7;8;9
Và b chỉ có thể = 0;1;2;3;4;5
Sau đó bạn thay vào biểu thức 7a5+8b4 cho đến khi nào ra 1 số chai hết cho 9 thì ra được a và b
a = { 3 }
b = { 8 }
Vậy số hoàn chỉnh là : 13788 .
Nếu đúng thì tik mik nha !
Để 1a78b chia 5 dư 3 thì b = 3 hoặc 8
Vì 1a78b chia hết cho 2 nên b = 8
Để 1a788 chia hết cho 9 thì 1 + a + 7 + 8 + 8 chia hết cho 9 = 24 + a chia hết cho 9
=> a \(\in\) {3;6;9}
Vậy a \(\in\) {3;6;9} và b \(\in\){8}
a) Để: \(\overline{a785b}\) chia hết cho 5 thì: \(b\in\left\{0;5\right\}\)
TH1: số đó có dạng: \(\overline{a7850}\) mà số này chia 9 dư 2
Nên: \(\overline{a7848}\) chia hết cho 9 \(\Rightarrow a=36-7-8-4-8=9\)
TH2: số đó có dạng: \(\overline{a7855}\) mà số này chia 9 dư 2
Nên: \(\overline{a7853}\) chia hết cho 9 \(\Rightarrow a=27-7-8-5-3=4\)
Vậy các số (a;b) thỏa mãn là: \(\left(9;0\right);\left(4;5\right)\)
b) Để: \(A=\overline{a785b}\) là số chẵn thì \(b\in\left\{0;2;4;6;8\right\}\)
TH1: số đó có dạng \(\overline{a7850}\) mà số này chia hết cho 5 không dư 3 (loại TH1)
TH2: số đó có dạng \(\overline{a7852}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7849}\) \(⋮̸\)5 (loại TH2)
TH3: số đó có dạng \(\overline{a7854}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7851}\) \(⋮̸\)5 (loại TH3)
TH4: số đó có dạng \(\overline{a7856}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7853}\) \(⋮̸\)5 (loại TH4)
TH5: số đó có dạng \(\overline{a7858}\) mà số này chia cho 5 dư 3 \(\Rightarrow\overline{a7855}\) ⋮ 5 (đúng)
Mà: số này chia hết cho 9 \(\Rightarrow a=36-7-8-5-8=8\)
Vậy cặp số (a;b) thỏa mãn là (8;8)
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
a) Để 52ab chia hết cho 9, 2 và chia 5 dư 4
b là 9 hoặc 4 thì chia cho 5 dư 4
52ab chia hết cho 2 => b=4
( 5+2+a+4 ) chia hết cho 9
( 11 + a ) chia hết cho 9
11 chia 9 dư 2
11-2 = 9 chia hết cho 9 => 18 chia hết cho 9
=> a = 18 - 11 = 7
Vậy a = 7
b = 4
Số đó là : 5274
b) Để 12a5b chia hết cho 2,9 và chia 5 dư 2
b có thể = 2 hoặc 7
12a5b chia hết cho 2 => b = 2 thì chia hết cho 2 và chia cho 5 dư 2
( 1 + 2 + a + 5 + 2 ) chia hết cho 9
( 10 + a ) chia hết cho 9
10 chia 9 dư 1
10-1 = 9 chia hết cho 9 => 18 chia hết cho 9
=> a = 18-10 = 8
Vậy : a = 8
b = 2
Số đó là : 12852