K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

x=1,y=2

x=0,y=0

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

15 tháng 3 2021

\(x^2+y^2+4=xy+2y+2x\)

\(\Leftrightarrow2x^2+2y^2+8=2xy+4x+4y\)
\(\Leftrightarrow2x^2+2y^2+8-2xy-4x-4y=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2=0\)

Ta có:

\(\left(x-y\right)^2\ge0\forall x;y\)

\(\left(x-2\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-2\right)^2+\left(x-2\right)^2\ge0\forall x;y\)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-2=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=2\\x=2\end{cases}}\Leftrightarrow x=y=2\)

Vậy phương trình có nghiệm (x;y) =(2;2)

23 tháng 9 2018

Ta có \(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)

<=> \(\left(2x\right)^3-y^3+\left(2x\right)^3+y^3-16x^3+16xy=32\)

<=> \(8x^3+8x^3-16x^3+16xy=32\)

<=> \(16xy=32\)

<=> \(xy=2\)

=> x, y cùng dấu (vì \(xy>0\))

Vậy có 4 cặp số nguyên (x, y) thoả mãn đẳng thức trên: (1; 2); (2; 1); (-1; -2); (-2; -1)

26 tháng 3 2018

đc sài máy tính bỏ túi để giải ko bạn

9 tháng 9 2020

Xét \(x=0\Rightarrow y^2=-2y\Leftrightarrow\orbr{\begin{cases}y=0\\y=-2\end{cases}}\)

Xét \(x\ne0\Rightarrow x^2\ge1\)(vì \(x\inℤ\))

\(2x^2-2xy+y^2=2\left(x-y\right)\Leftrightarrow x^2+\left(x^2-2xy+y^2\right)-2\left(x-y\right)=0\)

\(\Leftrightarrow x^2+\left(x-y\right)^2-2\left(x-y\right)=0\)

Vì \(x^2\ge1\)nên \(x^2+\left(x-y\right)^2-2\left(x-y\right)\ge\left(x-y\right)^2-2\left(x-y\right)+1=\left(x-y-1\right)^2\ge0\)

Mà đề yêu cầu giải biểu thức bằng 0 nên ta xét điều kiện xảy ra của dấu "=": \(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}}\)

\(\orbr{\begin{cases}x=1,y=0\\x=-1,y=-2\end{cases}}\)

\(\hept{\begin{cases}x^2=1\\x-y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=0\end{cases}}\\\hept{\begin{cases}x=-1\\y=-2\end{cases}}\end{cases}}}\)Vậy phương trình nhận 4 nghiệm (x;y)=(0;0),(0;-2),(1;0),(-1;-2).