Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-y^3+xy=1\)
\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)+xy=1\)
\(\Leftrightarrow\left(x-y\right)^3+\frac{1}{27}+3xy\left(x-y+\frac{1}{3}\right)=\frac{26}{27}\)
\(\Leftrightarrow\left(x-y+\frac{1}{3}\right)\left[\left(x-y\right)^2-\frac{x-y}{3}+\frac{1}{9}\right]+3xy\left(x-y+\frac{1}{3}\right)=\frac{26}{27}\)
\(\left(x-y+\frac{1}{3}\right)\left[\left(x-y\right)^2-\frac{x-y}{3}+\frac{1}{9}+3xy\right]=\frac{26}{27}\)
Đoạn này ez
Ta luôn có \(y^3>x^3\left(x;y\in Z\right)\left(1\right)\)
Xét \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-x^3-x^2-x-1\)
\(=5x^2+11x+7=5\left(x^2+2.\frac{11}{10}x+\frac{121}{100}\right)+\frac{19}{20}\)
\(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\left(2\right)\)
Từ (1) và (2) \(\Rightarrow y^3=\left(x+1\right)^3\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)Đến Đây thay vào tìm y là xong
Có 3x^2+y^2+2x-2y=1
=>9x^2+3y^2+6x-6y=3
=>(3x+1)^2+3(y-1)^2=7
=>3(y-1)^2 <=7
=> (y-1)^2<=7/3<2.333(3)
Mà (y-1)^2 là scp
=> (y-1)^2 thuộc 0,1
Sau đó xét 2 trg hợp và đối chiếu đk x thuộc Z
Chúc học tốt nhaaa
Với [x>1x<−1] ta có: x3<x3+2x2+3x+2<(x+1)3⇒x3<y3<(x+1)3 (không xảy ra)
Từ đây suy ra −1≤x≤1
Mà x∈Z⇒x∈{−1;0;1}
∙ Với x=−1⇒y=0
∙ Với x=0⇒y=2√3 (không thỏa mãn)
∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)
- Oral1020, DarkBlood, trandaiduongbg và 1 người khác yêu thích
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927