K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2023

\(2xy^2+2x+3y^2=4\left(x;y\inℤ\right)\)

\(\Leftrightarrow2x\left(y^2+1\right)+3y^2+3-3=4\)

\(\Leftrightarrow2x\left(y^2+1\right)+3\left(y^2+1\right)=7\)

\(\Leftrightarrow\left(2x+3\right)\left(y^2+1\right)=7\)

\(\Leftrightarrow\left(2x+3\right);\left(y^2+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)

\(TH1:\left\{{}\begin{matrix}2x+3=-1\\y^2+1=-7\left(loại\right)\end{matrix}\right.\)

\(TH2:\left\{{}\begin{matrix}2x+3=1\\y^2+1=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\y^2=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\pm\sqrt[]{6}\left(loại\right)\end{matrix}\right.\)

\(TH3:\left\{{}\begin{matrix}2x+3=-7\\y^2+1=-1\left(loại\right)\end{matrix}\right.\)

\(TH1:\left\{{}\begin{matrix}2x+3=7\\y^2+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=4\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\) thỏa điều kiện đề bài

3 tháng 9 2023

2xy² + 2x + 3y² = 4

2xy² + 2x + 3y² + 3 = 4 + 3

(2xy² + 2x) + (3y² + 3) = 7

2x(y² + 1) + 3(y² + 1) = 7

(y² + 1)(2x + 3) = 7

TH1: 2x + 3 = 1 và y² + 1 = 7

*) 2x + 3 = 1

2x = -2

x = -1 (nhận)

*) y² + 1 = 7

y² = 6

y = ±√6 (loại)

TH2: 2x + 3 = -1 và y² + 1 = -7

*) 2x + 3 = -1

2x = -4

x = -2 (nhận)

*) y² + 1 = -7

y² = -8 (vô lý)

TH3: 2x + 3 = 7 và y² + 1 = 1

*) 2x + 3 = 7

2x = 4

x = 2 (nhận)

*) y² + 1 = 1

y² = 0

y = 0 (nhận)

TH4: 2x + 3 = -7 và y² + 1 = -1

*) 2x + 3 = -7

2x = -10

x = -5 (nhận)

*) y² + 1 = -1

y² = -2 (vô lý)

Vậy ta được cặp giá trị (x; y) thỏa mãn: (2; 0)

24 tháng 9 2018

\(x^2-3y^2+2xy-2x+6y-4=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)

Làm nôt

4 tháng 3 2019

Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)

Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)

\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)

Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)

\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)

Đến đây bí!

22 tháng 4 2017

Bài 1 : x = 0 ; y = 2

Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0

Min A = 0,5 <=> x = y = 0,5

(2y)^ 2 = 41 − (x − y)^ 2 − x^ 2 ≤ 41

⇒ y = {0; ±1; ±2; ±3} 

Mặt khác do 5y^2 = 41 − 2 (x^ 2 − xy) 

 Với y = −3 ⇒ 2x 2 + 6xy + 4 = 0 ⇒  x = −1

                                                         x = −2

- Với y=-1............................ bạn làm tương tự

3 tháng 7 2021

Ta có: 2x2 + 2xy - x + y = 66

<=> (x + y)2 + x2 - y2 - (x - y) = 66

<=> (x + y)^2 - 1 + (x - y)(x + y - 1) = 65

<=> (x + y - 1)(x + y + 1) + (x - y)(x + y - 1) = 65

<=> (x + y - 1)(x + y + 1 + x - y) = 65

<=> (x + y - 1)(2x + 1) = 65 = 1. 65 = 5.13 (vì x,y nguyên dương)

Lập bảng: 

x + y - 1  1 5 13 65
 2x + 1 65 13 5 1
  x 32 6 2 0
  y -30 (ktm) 0 12 66

Vậy ...

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

23 tháng 7 2020

\(4x^2+y^2=\left(2xy+1\right)^2\Leftrightarrow4x^2+y^2=4x^2y^2+4xy+1\Leftrightarrow\left(2x-y\right)^2-4x^2y^2=1\)

\(\Leftrightarrow\left(2x-y-2xy\right)\left(2x-y+2xy\right)=1\)

Đến đây ta có các trường hợp

\(\hept{\begin{cases}2x-y-2xy=1\\2x-y+2xy=1\end{cases}}\)và \(\hept{\begin{cases}2x-y-2xy=-1\\2x-y+2xy=-1\end{cases}}\)

Giải ra được \(\left(x;y\right)\in\left\{\left(0;1\right);\left(0;-1\right)\right\}\)