Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3y^2+2xy-2x+6y-4=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)
Làm nôt
Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)
Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)
\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)
Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)
\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)
Đến đây bí!
Bài 1 : x = 0 ; y = 2
Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0
Min A = 0,5 <=> x = y = 0,5
(2y)^ 2 = 41 − (x − y)^ 2 − x^ 2 ≤ 41
⇒ y = {0; ±1; ±2; ±3}
Mặt khác do 5y^2 = 41 − 2 (x^ 2 − xy)
Với y = −3 ⇒ 2x 2 + 6xy + 4 = 0 ⇒ x = −1
x = −2
- Với y=-1............................ bạn làm tương tự
Ta có: 2x2 + 2xy - x + y = 66
<=> (x + y)2 + x2 - y2 - (x - y) = 66
<=> (x + y)^2 - 1 + (x - y)(x + y - 1) = 65
<=> (x + y - 1)(x + y + 1) + (x - y)(x + y - 1) = 65
<=> (x + y - 1)(x + y + 1 + x - y) = 65
<=> (x + y - 1)(2x + 1) = 65 = 1. 65 = 5.13 (vì x,y nguyên dương)
Lập bảng:
x + y - 1 | 1 | 5 | 13 | 65 |
2x + 1 | 65 | 13 | 5 | 1 |
x | 32 | 6 | 2 | 0 |
y | -30 (ktm) | 0 | 12 | 66 |
Vậy ...
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
\(4x^2+y^2=\left(2xy+1\right)^2\Leftrightarrow4x^2+y^2=4x^2y^2+4xy+1\Leftrightarrow\left(2x-y\right)^2-4x^2y^2=1\)
\(\Leftrightarrow\left(2x-y-2xy\right)\left(2x-y+2xy\right)=1\)
Đến đây ta có các trường hợp
\(\hept{\begin{cases}2x-y-2xy=1\\2x-y+2xy=1\end{cases}}\)và \(\hept{\begin{cases}2x-y-2xy=-1\\2x-y+2xy=-1\end{cases}}\)
Giải ra được \(\left(x;y\right)\in\left\{\left(0;1\right);\left(0;-1\right)\right\}\)
\(2xy^2+2x+3y^2=4\left(x;y\inℤ\right)\)
\(\Leftrightarrow2x\left(y^2+1\right)+3y^2+3-3=4\)
\(\Leftrightarrow2x\left(y^2+1\right)+3\left(y^2+1\right)=7\)
\(\Leftrightarrow\left(2x+3\right)\left(y^2+1\right)=7\)
\(\Leftrightarrow\left(2x+3\right);\left(y^2+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
\(TH1:\left\{{}\begin{matrix}2x+3=-1\\y^2+1=-7\left(loại\right)\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}2x+3=1\\y^2+1=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\y^2=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\pm\sqrt[]{6}\left(loại\right)\end{matrix}\right.\)
\(TH3:\left\{{}\begin{matrix}2x+3=-7\\y^2+1=-1\left(loại\right)\end{matrix}\right.\)
\(TH1:\left\{{}\begin{matrix}2x+3=7\\y^2+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=4\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\) thỏa điều kiện đề bài
2xy² + 2x + 3y² = 4
2xy² + 2x + 3y² + 3 = 4 + 3
(2xy² + 2x) + (3y² + 3) = 7
2x(y² + 1) + 3(y² + 1) = 7
(y² + 1)(2x + 3) = 7
TH1: 2x + 3 = 1 và y² + 1 = 7
*) 2x + 3 = 1
2x = -2
x = -1 (nhận)
*) y² + 1 = 7
y² = 6
y = ±√6 (loại)
TH2: 2x + 3 = -1 và y² + 1 = -7
*) 2x + 3 = -1
2x = -4
x = -2 (nhận)
*) y² + 1 = -7
y² = -8 (vô lý)
TH3: 2x + 3 = 7 và y² + 1 = 1
*) 2x + 3 = 7
2x = 4
x = 2 (nhận)
*) y² + 1 = 1
y² = 0
y = 0 (nhận)
TH4: 2x + 3 = -7 và y² + 1 = -1
*) 2x + 3 = -7
2x = -10
x = -5 (nhận)
*) y² + 1 = -1
y² = -2 (vô lý)
Vậy ta được cặp giá trị (x; y) thỏa mãn: (2; 0)