Tìm các bội chung thông qua tìm BCNN của 7; 9 và 6.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2019

Ta tìm được BCNN (7; 9; 6) = 126.

Từ đó ta có BC (7; 9; 6) = {0;126; 252; 378;...}.

2 tháng 7 2023

`8)` 

`a)` `->` ta được BCNN `(7;9;6)=126` 

`->` từ đó ta có được BC `(7;9;6)={0;126;252;...}`

`b)` `->` ta được BCNN `(8;12;15)=120`

`->` từ đó ta được BC `(8;12;15)={0;120;240;...}` 

`9)`

`a)->` BCNN `(15;18)=90` 

`e)->` BCNN`(33;44;55)=660`

`b)->` BCNN`(8;18;30)=360`

`f)->` BCNN`(10;12)=60`

`c)->` BCNN `(4;14;26)=364`

`g)->` BCNN `(24;10)=210`

`d)->` BCNN `(6;8;10)=120`

2 tháng 7 2023

2 bài này khá dài khi giải ra nên mik chỉ giảng cách tính thôi:

Bước 1: Phân tích từng số ra tích các thừa số nguyên tố.

Bước 2: Tìm BCNN bằng cách nhân các thừa số nguyên tố với nhau với số mũ lớn nhất (nếu có chung)

22 tháng 11 2017

1)a chia hết cho b thì b là ước của a

 a chia hết cho b thì b là bội của a. 

2)Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

3)Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

4)Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.

5)Ước chung của hai hay nhiều số là ước của tất cả các số đó.

6) Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

- Bước 2: Chọn ra các thừa số nguyên tố chung.

- Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.

7)ƯCLN của hai hay nhiều số là số lơn nhất trong tập hợp ước chung

9)Bội chung của hai hay nhiều số là bội của tất cả các số đó.

10

Bài 18: Bội chung nhỏ nhất

22 tháng 11 2017

1)a chia hết cho b thì b là ước của a

 a chia hết cho b thì b là bội của a. 

2)Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

3)Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

4)Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.

5)Ước chung của hai hay nhiều số là ước của tất cả các số đó.

6) Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

- Bước 2: Chọn ra các thừa số nguyên tố chung.

- Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.

7)ƯCLN của hai hay nhiều số là số lơn nhất trong tập hợp ước chung

9)Bội chung của hai hay nhiều số là bội của tất cả các số đó.

10

Bài 18: Bội chung nhỏ nhất

20 tháng 7 2019

BC (8;10) = B(40) = {0;40;80; 120;...}.

16 tháng 10 2024

BCNN của 8 và 10 là:

8=2^3

10=2.5

 BCNN(8;10)=2^3.5=40

Vậy BC (8;10)={0;40;80;120;169;...}

16 tháng 5 2017

Ta tìm được BCNN (8; 12; 15) = 120. Từ đó ta có:

BC (8; 12; 15) = {0; 120; 240;... }

4 tháng 12 2021

Ta tìm được BCNN (8; 12; 15) = 120. Từ đó ta có:

BC (8; 12; 15) = {0; 120; 240;... }

4 tháng 12 2021

Ta tìm được BCNN (8; 12; 15) = 120. Từ đó ta có:

BC (8; 12; 15) = {0; 120; 240;... }

4 tháng 12 2016

a) Ư(33)=\(\left\{1;3\right\}\)

B(33) =\(\left\{0;33\right\}\)

b) ƯC(33;44)=\(\left\{1;11\right\}\)

c) BC(33;44) =\(\left\{0;132\right\}\)

 

4 tháng 12 2016

a. Ước của 33 là:

Ư(33) = {1 ; 3 ; 11 ; 33}

Bội của 33 là:

B (33) = {0 ; 33 ; 66 ; 99 ; 132 ;...}

b. Ước của 44 là:

Ư (44) = {1 ; 2 ; 4 ; 11 ; 44}

Ước chung của 33 và 44 là:

ƯC (33, 44) = {1 ; 11}

c. Bội của 44 là:

B (44) = {0 ; 44 ; 88 ; 132 ;...}

Bội chung của 33 và 44 là:

BC (33, 44) = {0 ; 132 ;...}

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}