Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Đang bận nên hướng dẫn
a )Đặt \(n^2-n+2=a^2\) (a thuôc Z)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)
Đến đây phân tích ước của 7 ra ; tự lm đc
b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10
=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP
1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath
2/
Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)
\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)
\(\Rightarrow m^2-\left(n+2\right)^2=2009\)
\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)
Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)
\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)
Vậy n = 1002
Ta có \(P=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Dễ thấy nếu \(5|n\), \(n\equiv1\left[5\right]\) hay \(n\equiv4\left[5\right]\) thì \(P⋮5\). Còn nếu \(n\equiv2\left[5\right]\) hay \(n\equiv3\left[5\right]\) thì \(n^2+1⋮5\Rightarrow P⋮5\). Vậy \(P=n^5-n⋮5,\) với mọi số tự nhiên \(n\). Suy ra \(D=P+2\equiv2\left[5\right]\)
Mà một số chính phương khi chia cho 5 chỉ có thể dư 0, 1 hoặc 4 (chứng minh điều này rất dễ, bạn chỉ cần xét lần lượt \(n\equiv0,1,2,3,4\left[5\right]\) rồi đặt \(n=5k+i\left(0\le i\le4\right)\) rồi khai triển \(\left(5k+i\right)^2=25k+10ki+i^2\equiv i^2\left[5\right]\) là xong).
Suy ra D không thể là số chính phương, nghĩa là không tồn tại n để D là số chính phương.
giúp mik nha