K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

\(\frac{x}{3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{x}{14}\left(1\right);\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{35}\left(2\right)\)

Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{14}=\frac{z}{35}\)=>\(\frac{x^2}{36}=\frac{y^2}{196}=\frac{z^2}{1225}=\frac{2x^2}{72}=\frac{3y^2}{588}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{36}=\frac{y^2}{196}=\frac{z^2}{1225}=\frac{2x^2}{72}=\frac{3y^2}{588}=\frac{2x^2+3y^2-z^2}{72+588-1225}=\frac{-2260}{-565}=4\)

hay \(\frac{x^2}{36}=4\Leftrightarrow x^2=144\Leftrightarrow x=\pm12\)

      \(\frac{y^2}{196}=4\Leftrightarrow y^2=784\Leftrightarrow y=\pm28\)

      \(\frac{z^2}{1225}=4\Leftrightarrow z^2=\Leftrightarrow z=\pm70\)

+)Với x=-12 thì y=-28 và z=-70

+)Với x=12 thì y=28 và z=70

Vậy ...................

20 tháng 12 2016

lúc nãy viết thiếu, chỗ z2=4900 nhé :)

29 tháng 12 2016

Ta có :

- x/3 = y/7 suy ra : x/6 = y/14

- y/2 = z/5 suy ra : y/14 = z/35

Và ................................

Kết quả là : x = 24 ; z = 140

ai tk mk mk tk lại

20 tháng 12 2016

Ta có:

- x/3 = y/7 suy ra: x/6 = y/14

- y/2 = z/5 suy ra: y/14 = z/35

Và.......................................................

Nói chung kết quả: x=24

                             y=56

                             z=140

23 tháng 10 2016

Bài 1:

Giải:

Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)

\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)

\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)

+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)

+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)

+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(6,2;9,8;8,2\right)\)

27 tháng 10 2016

Vậy còn mấy câu kja hì sao pạn???

26 tháng 8 2016

Ta có: \(3x=2y\Rightarrow y=\frac{3}{2}x\)\(;\)\(3x=\frac{3}{2}z\Rightarrow z=\frac{3}{\frac{3}{2}}x\Rightarrow z=2x\)

\(\Rightarrow x+y+z=x+\frac{3}{2}x+2x=4,5x=18\Rightarrow x=4\)

\(\Rightarrow y=\frac{3}{2}x=\frac{3}{2}.4=6\)\(;\)\(z=2x\Rightarrow z=2.4=8\)

(Dấu . là dấu nhân nha bạn)

Theo đề bài ta có:

x^2=y.z ; y^2=x.z;z^2=x.y

\Rightarrowx.x=y.z

\Rightarrowy.y=x.z

\Rightarrowz.z=x.y

cân bằng phương trình x.x=y.z bằng cách nhân x vào cả hai vế ta có:

x.x.x=y.z.x \Rightarrow x^3=y.z.x

cân bằng phương trình y.y=x.z bằng cách nhân y vào cả hai vế ta có:

y.y.y=x.z.y \Rightarrow y^3=x.z.y

cân bằng phương trình z.z=x.y bằng cách nhân z vào cả hai vế ta có:

z.z.z=x.y.z \Rightarrow z^3=x.y.z

vì y.z.x=x.z.y=x.y.z

\Rightarrow x^3=y^3=z^3

Vì  x^3 ; y^3 ; z^3 Có cùng số mũ và bằng nhau

Nên các cơ số cũng bằng nhau

\Rightarrowx=y=z

Ta có: \(x^2=y\cdot z\)

nên \(z=\dfrac{x^2}{y}\)(1)

Ta có: \(y^2=z\cdot x\)

nên \(z=\dfrac{y^2}{x}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)

\(\Leftrightarrow x^3=y^3\)

hay x=y(3)

Ta có: \(x^2=y\cdot z\)

nên \(y=\dfrac{x^2}{z}\)(4)

Ta có: \(z^2=x\cdot y\)

nên \(y=\dfrac{z^2}{x}\)(5)

Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)

\(\Leftrightarrow x^3=z^3\)

hay x=z(6)

Từ (3) và (6) suy ra x=y=z(đpcm)

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)

1 tháng 8 2018

\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)

Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)

Vậy \(x=1;y=-2;z=3\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2023

Lời giải:
Theo bài ra ta có:

$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$

$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$

Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$

$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:

$3x^2-y^2+z^2=876$

$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$

$\Rightarrow 219k^2=876$

$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$

Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$

Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$

7 tháng 10 2018

ADTCDTSBN

có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{15}=\frac{x+y+z}{2+5+15}=\frac{230}{22}=\frac{115}{11}.\)

=> x/2 = 115/11 => x  = 230/11

...

bn tự lm típ nha!!!

7 tháng 10 2018

Cách 2:

ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\\z=15k\end{cases}}\)

mà x + y + z = 230

=> 2k + 5k + 15k = 230

k.(2+5+15) = 230

k.22 = 230

k = 115/11

=> x = 2k = 2. 115/11 = 230/11

...