K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

a/ 

Đặt $\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}=k$

$\Rightarrow a=2k+1; b=3k+2; c=4k+3$

Khi đó:

$3a+3b-c=50$

$\Rightarrow 3(2k+1)+3(3k+2)-(4k+3)=50$

$\Rightarrow 11k+6=50$

$\Rightarrow 11k=44\Rightarrow k=4$

Ta có:

$a=2k+1=2.4+1=9$

$b=3k+2=3.4+2=14$

$c=4k+3=4.4+3=19$

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

b/

$2a=3b; 5b=7c\Rightarrow \frac{a}{3}=\frac{b}{2}; \frac{b}{7}=\frac{c}{5}$

$\Rightarrow \frac{a}{21}=\frac{b}{14}=\frac{c}{10}$

Áp dụng TCDTSBN:

$\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{45}{15}=3$

$\Rightarrow a=21.3=63; b=14.3=42; c=10.3=30$

14 tháng 10 2016

Tìm các số a, b, c  biết rằng :

     1 . Ta có:       \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)

 Ap dụng tính chất dãy tỉ số bắng nhau ta dược :

                    \(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)

Nên : a/20=1/3\(\Leftrightarrow\)     a=1/3.20    \(\Leftrightarrow\)a=20/3

        b/9=1/3   \(\Leftrightarrow\)      b=1/3.9     \(\Leftrightarrow\)    b=3

        c/6=1/3   \(\Leftrightarrow\)      c=1/3.6   \(\Leftrightarrow\)      c= 2

14 tháng 10 2016

mấy bài sau làm tương tự nhu câu 1

14 tháng 2 2019

CÁC BÀI NÀY ĐỀU GIẢI THEO TÍNH CHẤT DÃY TỈ SỐ BẮNG NHAU

a) ta có: 2a = 3b; 5b = 7c

\(\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right);\frac{b}{14}=\frac{c}{10}\left(2\right)\)

VẾ (1) nhân cả 2 số với\(\frac{1}{7}\); VẾ (2) nhân cả hai số với \(\frac{1}{2}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU, TA CÓ:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)

PHẦN SAU TỰ LÀM^-^

c) ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU TA CÓ:

   \(\frac{a}{3}=\frac{b+1}{4}=\frac{c+2}{5}=\frac{a-b-1+c+2}{3-4+5}=\frac{a-b+c+1}{4}=\frac{-17}{4}\)

PHẦN SAU TỰ LÀM^-^

13 tháng 9 2018

bài 1: có 2x-y=1=> 2x=1+y=> x =1+y/2 (1)

thay (1) vào pt trên: x/2=y/5=(1+y/2)/2=y/5 => 1+y/4=y/5=> 5(1+y)=4y (nhân chéo)=> y= -5=> x=(1+-5)/2=-2

13 tháng 9 2018

câu 2: a) tương tự như bài 1:thay b=4+a vào pt => a=8 và b=12

bài 3 dể mà!!!:)).    3^n+2 +3^n=270=> 3^n.3^2+3^n=270=> 3^n.(9+1)=270( vì 3 bình =9)=> 3^n=27=3^3 => n=3

28 tháng 7 2016

Hỏi đáp Toán

28 tháng 7 2016

Mình không hiểu lắm ở dòng thứ 3 và 4 của câu a, bạn giải thích lại cho mình được không?

29 tháng 9 2020

1. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}\)

\(=\frac{\left(5z-3x-4y\right)-34}{8}=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\frac{x-1}{2}=2\)\(\Rightarrow x-1=4\)\(\Rightarrow x=5\)

\(\frac{y+3}{4}=2\)\(\Rightarrow y+3=8\)\(\Rightarrow y=5\)

\(\frac{z-5}{6}=2\)\(\Rightarrow z-5=12\)\(\Rightarrow z=17\)

Vậy \(x=5\)\(y=5\)và \(z=17\)

29 tháng 9 2020

2. Từ \(2a=3b\)\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=\frac{a}{21}=\frac{b}{14}\)(1)

Từ \(5b=7c\)\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)\(\Rightarrow\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=\frac{b}{14}=\frac{c}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

\(=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow a=21.2=42\)\(b=14.2=28\)\(z=10.2=20\)

Vậy \(a=42\)\(b=28\)\(z=20\)

Ta có: \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\left(1\right)\)

        \(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\left(2\right)\)

Từ 1 và 2 \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{-30}{15}=-2\)

\(\Rightarrow\frac{a}{21}=-2\Rightarrow a=-42\)

    \(\frac{b}{14}=-2\Rightarrow b=-28\)

     \(\frac{c}{10}=-2\Rightarrow c=-20\)

Vậy \(a+b+c=-42-28-20=-90\)

3 tháng 2 2017

Cảm ơn bạn nha!

30 tháng 7 2016
a=42; b=28; c=20.
30 tháng 7 2016

ta có  3a+5c=7b+30 => 3a+ 5c-7b=30

\(\text{2a=3b}\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)

\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)

\(\frac{3a}{63}=2\)

3a=126

a=42

\(\frac{7b}{98}=2\)

7b=196

b=28

\(\frac{5c}{50}=2\)

5c=100

c=20

đáp số  a=42; b=28; c=20.