K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 10 2020

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)

\(\Rightarrow a=b=c=\frac{2019}{3}\)

8 tháng 11 2021

\(\dfrac{2019}{3}\)=673

6 tháng 8 2019

Câu hỏi của Thiên Ân - Toán lớp 8 - Học toán với OnlineMath

tương tự như câu này đều thay số thôi

AH
Akai Haruma
Giáo viên
14 tháng 11 2021

Lời giải:
$a^2+b^2+c^2=ab+bc+ac$

$\Leftrightarrow 2a^2+2b^2+2c^2=2ab+2bc+2ac$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2\geq 0; (b-c)^2\geq 0; (c-a)^2\geq 0$ nên để tổng của chúng $=0$ thì $(a-b)^2=(b-c)^2=(c-a)^2=0$

$\Rightarrow a=b=c$

Kết hợp $a+b+c=2019$

$\Rightarrow a=b=c=\frac{2019}{3}=673$

20 tháng 10 2019

<=> \(2a^2+2b^2+2c^2=2ab+2bc+2ca< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0< =>\)

a=b=c => 32020 = 3.a2019 <=> 32019 = a2019 => a=b=c=3

A= 12017 + 02018 + (-1)2019 = 0

15 tháng 1 2021

hoc24.vn

Khác số chút thoyy.

15 tháng 1 2021

Cảm ơn bạn nhiều !

2 tháng 6 2018

\(S=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\\ =\sqrt{a^2+2ab+b^2-3ab}+\sqrt{b^2+2bc+c^2-3bc}+\sqrt{c^2+2ca+a^2-3ca}\\ =\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\)

Áp dụng BDT : Cô-si:

\(\Rightarrow S=\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\\ \ge\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot\left(a+b\right)^2}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\left(b+c\right)^2}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\left(c+a\right)^2}\\ =\sqrt{\dfrac{1}{4}\left(a+b\right)^2}+\sqrt{\dfrac{1}{4}\left(b+c\right)^2}+\sqrt{\dfrac{1}{4}\left(c+a\right)^2}\\ =\dfrac{1}{2}\left(a+b\right)+\dfrac{1}{2}\left(b+c\right)+\dfrac{1}{2}\left(c+a\right)\\ =\dfrac{1}{2}\left(a+b+b+c+c+a\right)\\ =a+b+c\\ =2019\)

Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}a=b=c\\a+b+c=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=673\\b=673\\c=673\end{matrix}\right.\)

Vậy \(S_{Min}=2019\) khi \(a=b=c=673\)

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Lời giải:

\(a=2018x+2015; b=2018x+2013; c=2019x+2019\)

\(\Rightarrow a-b=2; b-c=-x-6; c-a=x+4\)

Ta có:

\(a^2+b^2+c^2-ab-bc-ac=\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}\)

\(=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}=\frac{2^2+(-x-6)^2+(x+4)^2}{2}\)

\(=\frac{2x^2+20x+56}{2}=x^2+10x+28\)