Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2m + 2n = 2m+n
=> 2m+n - 2m - 2n = 0
=> 2m(2n - 1) - (2n - 1) = 1
=> (2m - 1)(2n - 1) = 1
=> \(\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\)=> m = n = 1
Vậy m = n = 1
b, 2m - 2n = 256
Dễ thấy m ≠ n, ta xét hai trường hợp:
- Nếu m - n = 1 => n = 8, m = 9
- Nếu m - n ≥ 2 => 2m-n - 1 là số lẻ lớn hơn 1, khi đó VT chứa thừa số nguyên tố khác 2
Mà VT chứa thừa số nguyên tố 2 => trường hợp này không xảy ra
Vậy m = 9, n = 8
Dễ thấy m>n>0m>n>0. Ta có 2n(2m−n−1)=19842n(2m−n−1)=1984 . Nhận thấy 2m−n−12m−n−1 lẻ và 2n2n là lũy thừa bậc 2 của một số nguyên dương. Mà khi phân tích 1984=2⋅311984=2⋅31 nên 2n=26⟹n=62n=26⟹n=6 và 2m−n−1=31⟹2m−n=25⟹m−n=5⟹m=112m−n−1=31⟹2m−n=25⟹m−n=5⟹m=11.
k mk nja
bn tham khỏa Câu hỏi của Noo Phước Thịnh - Toán lớp 7 | Học trực tuyến
1984=991.2 (991 nguyên tố à) có thể thường là vậy
2^(m-1)-2^(n-1)=991
vậy n=1
2^(m-1)=992=31*2^5
=> vô nhiệm
2m + 2n = 2m+n
=> 2m = 2m+n - 2n = 2n.(2m - 1)
Dễ thấy m \(\ne0\Rightarrow2^m⋮2\)
Mà 2m - 1 chia 2 dư 1 nên \(\begin{cases}2^m=2^n\\2^m-1=1\end{cases}\)\(\Rightarrow\begin{cases}m=n\\2^m=2=2^1\end{cases}\)=> m = n = 1
Vậy m = n = 1
2m - 2n = 256
=> 2n.(2m-n - 1) = 28
Dễ thấy: \(2^{m-n}-1\ne0\Rightarrow2^{m-n}\ne1\) => m - n \(\ne0\)
\(\Rightarrow2^{m-n}⋮2\)
=> 2m-n - 1 chia 2 dư 1
=> \(\begin{cases}2^n=2^8\\2^{m-n}-1=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\2^{m-n}=2=2^1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m-n=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m=9\end{cases}\)
Vậy n = 8; m = 9
2n(2(m−n)−1)=26.31
=> 2n=26⇒n=6 và
2(m−n)−1=31⇒2(m−n)=32=25⇒m−n=5⇒m−6=5⇒m=11
=> m=11 và n=6
h cho minh nha !
* Xét m < n thì 2m < 2n nên VT < 0 mà VP > 0 nên ta loại
* Xét m = n thì VT = 0 và VP > 0 (loại)
* Xét m > n thì phương trình tương đương với \(2^n\left(2^{m-n}-1\right)=1984=2^6.31\)
m > n nên m - n > 0 suy ra \(2^{m-n}\)luôn chẵn suy ra \(2^{m-n}-1\)lẻ nên \(2^{m-n}-1=31\Rightarrow m-n=5\)
và \(2^n=2^6\Rightarrow n=6\Rightarrow m=11\)
Vậy m = 11; n = 6
a) Đặt m = n + k
Ta có 2m - 2n = 256
<=> 2n + k - 2n = 256
<=> 2n(2k - 1) = 256 (1)
Nhận thấy : 2k - 1 lẻ (2)
Từ (1) và (2) => 2k - 1 = 1 => 2k = 2 => k = 1
Khi đó 2n = 256
<=> n = 8
=> m = n + k = 9
Vậy m = 9 ; n = 8
b) Đặt m = n + k (k \(\inℕ^∗\))
Khi đó 2m - 2n = 1984
<=> 2n + k - 2n = 1984
<=> 2n(2k - 1) = 1984 (1)
Vì 2k - 1 lẻ (2)
Từ (1) và (2) => 2k - 1 \(\in\left\{31;1\right\}\)
Khi 2k - 1 = 31
=> 2k = 32
=> k = 5
Khi đó 2n = 64 => n = 6
=> m = n + k = 11
Khi 2k - 1 = 1
=> 2k = 2
=> k = 1
Khi đó 2n = 992
=> n \(\in\varnothing\)
Vậy n = 6 ; m = 11