Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2018\times2020+2021\) và \(B=2019\times2019+2021\)
\(A=2018\times2019+2018+2021\)
\(B=2018\times2019+2019+2021\)
Vì \(2019>2018\Rightarrow A< B\)
Ta có:
\(A=\frac{2021^{2021}+1}{2021^{2022}+1}\Leftrightarrow10A=\frac{2021^{2022}+10}{2021^{2022}+1}=1+\frac{9}{2021^{2022}+1}\)
\(B=\frac{2021^{2022}-1}{2021^{2023}-1}\Leftrightarrow10B=\frac{2021^{2023}-10}{2021^{2023}-1}=1-\frac{9}{2021^{2023}-1}\)
Hay ta đang so sánh: \(\frac{9}{2021^{2022}};\frac{9}{2021^{2023}}\)
Mà \(\frac{9}{2021^{2022}}>\frac{9}{2021^{2023}}\)nên \(\frac{2021^{2021}+1}{2021^{2022}+1}>\frac{2021^{2022}-1}{2021^{2023}-1}\)hay\(A>B\)
Vậy \(A>B\)
a, A = \(\dfrac{2021}{11-x}\)
Vì \(x\) là số tự nhiên nên A đạt giá trị lớn nhất khi 11 - \(x\) đạt giá trị nhỏ nhất
11- \(x\) đạt giá trị nhỏ nhất là 1 ⇔ 11 - \(x\) = 1 ⇔ \(x\) = 11 - 1 = 10
Vậy A đạt giá trị nhỏ nhất là \(\dfrac{2021}{11-10}\) = 2021 khi \(x\) =10
\(\overline{abc}\) \(\times\) 5 = \(\overline{dad}\) ⇒ \(\overline{dad}\) ⋮ 5 ⇒ \(d\) = 0; 5⇒ \(d\) = 0; 5
⇒ \(d\) = 5 (ví số 0 không thể đứng đầu)
nếu \(a\) ≥ 2 ⇒ \(\overline{abc}\) \(\times\) 5 ≥ 200 \(\times\) 5 = 1000 (loại) ⇒ \(a\) = 1
Thay \(a\) = 1; \(d\) = 5 vào biểu thức: \(\overline{abc}\) \(\times\) 5 = \(\overline{dad}\) ta có:
\(\overline{1bc}\) \(\times\) 5 = 515
\(\overline{1bc}\) = 515: 5
\(\overline{1bc}\) = 103
Vậy a =1; b= 0; c =3; d =5
cái này mà là toán lớp 5 á bốc phét
thầy tớ cho đó