Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
f ) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(x^2+5x+5=t\), ta có :
\(\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-1-24=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
Thay và ta có :
\(\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a)\(f\left(x\right)=5x^3-9x^2+2x+m=5x^2\left(x+2\right)-19x\left(x+2\right)+40\left(x+2\right)-80+m=\left(x+2\right)\left(5x^2-19x+40\right)+m-80\)
Để \(f\left(x\right)⋮g\left(x\right)\) thì \(m-80=0\Leftrightarrow m=80\)
b) \(f\left(x\right)=\left(x+2\right)\left(5x^2-19x+40\right)+m-80\)
Để f(x) chia g(x) có số dư bằng 3 thì \(m-80=3\Leftrightarrow m=83\)
Áp dụng định lý Bơ-du ta có:
f(x) ⋮ (2x+5) ⇔ f(\(\dfrac{-5}{2}\))=0 (Kiến thức nâng cao lớp 8)
⇔ (\(\dfrac{-5}{2}\))4+(\(\dfrac{-5}{2}\))3+12.(\(\dfrac{-5}{2}\))2-m=0
⇔ \(\dfrac{1575}{16}\)-m=0
⇔ m= \(\dfrac{1575}{16}\)
Vậy m=\(\dfrac{1575}{16}\) thì x4+x3+12x2-m chia hết cho 2x+5
Bài 3:
Ta có: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
a: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a=24