Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{299}{600}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{299}{600}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{299}{600}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{299}{600}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{600}\)
\(\Rightarrow x+1=600\)
\(\Rightarrow x=600-1\)
\(\Rightarrow x=599\)
\(Vậy\) \(x=599\)
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{98x99}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}\)
\(=\frac{1}{2}-\frac{1}{99}\)
\(=\frac{99}{198}-\frac{2}{198}\)
\(=\frac{97}{198}\)
\(\frac{A}{198}=\frac{97}{198}=>A=198x97:198=97\)
=1/2-1/3+1/3-1/4+.......+1/a-1/a+1=49/100
1/2-1/a+1=49/100
1/a+1 = 1/2-49/100
1/a+1=1/100
a+1=100
a=99
=1/2-1/3+1/3-1/4+.......+1/a-1/a+1=49/100
1/2-1/a+1=49/100
1/a+1 = 1/2-49/100
1/a+1=1/100
a+1=100
a=99
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 + 1/ 6x7 + 1/7x8 + 1/8x9 + 1/9x10
= 2/5
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+....+\frac{1}{29\times30}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{29}-\frac{1}{30}\)
=\(\frac{1}{2}-\frac{1}{30}=\frac{15}{30}-\frac{1}{30}=\frac{14}{30}=\frac{7}{15}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{10}{20}-\frac{1}{20}=\frac{9}{20}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)\(\frac{1}{100}\)
A = \(1-\frac{1}{100}\)
A = \(\frac{100}{100}-\frac{1}{100}\)
A = \(\frac{99}{100}\)
1/2x3 +1/3x4 +..........+ 1/ax(a+1)=299/600
=>1/2-1/3+1/3-1/4+.........+ 1/a -1/a+1=299/600
=>1/2-1/a+1=299/600
=>a-1/2a=299/600
=>a=300