K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\)

Ta có: \(xy\ge yz;xy\ge xz\)

Ta có: \(xy+yz+xz\le3xy\)

\(\Rightarrow xyz\le3xy\Leftrightarrow z\le3\)

Xét với \(z\in\left\{3;2;1\right\}\left(z\in Z^+\right)\)

14 tháng 3 2018

Không mất tính tổng quát giả sử: x≥y≥z>0

Ta có: xy≥yz;xy≥xz

Ta có: xy+yz+xz≤3xy

⇒xyz≤3xy⇔z≤3

Xét với z∈{3;2;1}(z∈Z+)

 ...

1 tháng 3 2019

Vì vai trò của ba số x,y,z là như nhau

giả sử

\(x\ge y\ge z>0\)

\(\Rightarrow xy\ge yz;xy\ge xz\)
\(\Rightarrow xy+yz+xz\le3xy\)

\(\Leftrightarrow xyz\le3xy\)

\(\Rightarrow z\le3\)

\(\Rightarrow z\in\left\{1;2;3\right\}\)
\(\Rightarrow\left(x;y;z\right)=\left(1;2;3\right)\) và hoán vị của chúng thỏa mãn phương trình

5 tháng 4 2015

xy+yz+xz=2xyz

<=>(xy+yz+xz)/(xyz)=2xyz/(xyz)

<=>1/z+1/x+1/y=2                                   (1)

Giả sử x<hoặc=y<hoặc=z

=>1/x>hoặc bằng 1/y>hoặc bằng 1/z

=>1/x+1/x+1/x>hoặc=2

=>3/x>=2

Mà x thuộc N*

=>x=<1

=>x=1

Thay vào (1),ta được:

1/z+1+1/y=2

=>1/y+1/z=1                                  (2)

=>1/y+1/y>=1

=>2/y>=1

=>y=<2

=>y=2 hoặc y=1

+ y=1

Thay vào (2)

1/1+1/z=1

=>1/z=0 (loại)

+ y=2

Thay vào (2)

1/2+1/z=1

=>z=2 (thỏa mãn)

Vậy (x;y;z)=(1;2;2)và các hoán vị của chúng

5 tháng 4 2015

Mach Duy Hung: em cam on ak!

12 tháng 12 2016

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

12 tháng 12 2016

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)

9 tháng 12 2021

Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)

\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)

Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)

Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)

Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)

\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)

Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)

\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị

9 tháng 12 2021

Tí idol giúp em thêm mấy bài nữa nhé ! yeu