Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính chất: \(n^{4k+1}\) luôn cùng chữ với tận cùng với n
Do đó \(a^5\) cùng số tận cùng với a; \(b^5\) cùng số tận cùng với b, \(c^5\) cùng số tận cùng với c
\(\Rightarrow S\) cùng chữ số tận cùng với \(a+b+c\)
\(\Rightarrow S\) có tận cùng là 1
tính tổng các dãy sau :
A = 1 + 2 + 22+…+ 2100
B = 3 – 32 + 33 – … – 3100
Bài giải:
A = 1 + 2 + 22 + …+ 2 100
Nhân a = 2 cho hai vế :
2A = 2 + 22 + 23 + …+ 2101
tính : 2A – A = (2 + 22 + 23 + …+ 2101 ) – (1 +2 + 22+ …+2100)
Vậy A = 2101 – 1
B = 3 – 32 + 33 – … – 3100
Nhân a = 3 cho hai vế : 3B = 32 – 33 + 34 – … – 3101
Tín : B + 3B = (3 – 33 + 33) – …- 3100) + ( 32 – 23 +34 – … – 3101)
4B = 3 – 3101
Vậy B = ( 3- 3101) : 4
Đặt: S = 1.2.3.4.5.6.7.8.9.10.11.12
S/100=3.4.6.7.8.9.11.12 (1) là một số nguyên
hai chữ số tận cùng của S là 00
Mặt khác, trong suốt quá trình nhân liên tiếp các thừa số ở vế phải của (1), nếu chỉ để ý đến chữ số tận cùng, ta thấy S100 có chữ số tận cùng là 6 (vì 3.4=12; 2.6=12; 2.7=14; 4.8=32; 2.9=18; 8.11=88; 8.12=96)
Vậy ba chữ số tận cùng của S là 600
\(3^{2^{2003}}=3^{\overline{...6}}=\overline{...9}\)
Vậy \(3^{2^{2003}}\)có tận cùng là 9
Đây không phải là bài lớp 9