K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Dùng mod 1000
Sẽ tách 1000=8.125
Vì \(306^{2009^{300}}⋮8\) và (306, 125)=1
+) Ta có: \(306^{2009^{300}}\equiv0\left(mod8\right)\)(1)
+) Tìm ? : \(306^{2009^{300}}\equiv?\left(mod125\right)\)
+) \(2009^{300}\equiv9^{300}\equiv9^{10.30}\equiv1\left(mod100\right)\)
Đặt: \(2009^{300}=100t+1\)
Ta có: \(306^{2009^{300}}=306^{100t+1}=306^{100t}.306\equiv306\equiv56\left(mod125\right)\)(2)
Từ (1) và 56 chia hết cho 8 => \(306^{2009^{300}}-56\equiv0\left(mod8\right)\Rightarrow306^{2009^{300}}\equiv56\left(mod8\right)\)(3)
Từ (1), (2) và (125, 8) =1
=> \(306^{2009^{300}}\equiv56\left(mod1000\right)\)
Vậy 3 chữ số tận cùng là 056
Khồng phải từ (1) và (2) mà là từ (2) và (3)
(2) <=> \(306^{2009^{300}}-56\)chia hết cho 8
(3) <=> \(306^{2009^{300}}-56\)chia hết cho 125
Từ (2), (3) và (8, 125) => \(306^{2009^{300}}-56\)chia hết cho 1000
=>\(\text{}\text{}306^{2009^{300}}\)chia 1000 dư 56 nghĩa là \(\text{}\text{}306^{2009^{300}}\)có dạng có 3 chữ số tận cùng là 056