Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BCNN ( a; b ) \(⋮\)UCLN ( a; b )
và UCLN ( a; b ) \(⋮\)UCLN ( a; b )
=> BCNN( a; b ) + UCLN ( a; b ) \(⋮\)UCLN ( a; b )
=> 19 \(⋮\)UCLN ( a; b )
=> UCLN ( a; b ) = 1 hoặc UCLN (a; b ) = 19 ( loại)
=> BCNN ( a; b ) = 18 = \(3^2.2.1\)
Vì a < b và (a; b ) = 1.
Nên xảy ra 2TH:
TH1: a = 1, b = 18 (tm)
TH2: a = 2 , b = 9 (tm)
Kết luận: a = 1; b = 18 hoặc a = 2; b =9.
Theo công thức, ta có:
UCLN.BCNN = a.b (Phần này bạn không chép vào)
(Bắt đầu từ đây thì bạn chép)
Theo bài ra, ta có:
UCLN(a; b) = 10
BCNN(a; b) = 120
=> a.b = 10.120 = 1200 (*)
Vì UCLN(a; b) = 10
=> đặt a = 10k (1) (k, q thuộc N*; UCLN(k, q) = 1)
đặt b = 10q (2)
Thay a = 10k và b = 10q vào (*), ta có:
10k.10q = 1200.
(10.10).(k.q) = 1200
100.k.q = 1200
k.q = 1200 : 100 = 12. (3)
=> (k; q) thuộc {(1; 12); (2; 6); (3; 4); (4; 3); (6; 2); (12; 1)}
Mà UCLN(k; q) = 1
=> (k; q) thuộc {(1; 12); (3; 4); (4; 3); (12; 1)} (4)
Từ (1); (2); (3); (4), ta có bảng sau:
k | 1 | 3 | 4 | 12 |
q | 12 | 4 | 3 | 1 |
a | 10 | 30 | 40 | 120 |
b | 120 | 40 | 30 | 10 |
Vậy (a; b) thuộc {(10; 120); (30; 40); (40; 30); (120; 10)}
Lời giải:
a.
Ta có: $ab=BCNN(a,b).ƯCLN(a,b)$
$\Rightarrow 1200=3.ƯCLN(a,b).ƯCLN(a,b)$
$\Rightarrow ƯCLN(a,b).ƯCLN(a,b)=400=20.20$
$\Rightarrow ƯCLN(a,b)=20$
Đặt $a=20x, b=20y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đđ:
$ab=20x.20y$
$\Rightarrow 1200=400xy\Rightarrow xy=3$
Kết hợp với $x,y$ nguyên tố cùng nhau $\Rightarrow (x,y)=(1,3), (3,1)$
$\Rightarrow (a,b)=(20, 60), (60,20)$
b. Đề không rõ ràng. Bạn viết lại nhé.
Ta có:BCNN và ƯCNN của cùng 2 số luôn chia hết cho nhau
=> 19\(⋮\)ƯCLN(a,b)
Mà:ƯCLN của 2 số luôn luôn dương
=>ƯCLN(a,b)=1
Xét ƯCLN(a,b)=1
=>a và b là 2 số nguyên tố cùng nhau và có BCLN là 18 .
Có:
18 = 2.32
\(\Rightarrow\orbr{\begin{cases}a=2;b=3^2\Leftrightarrow a=2;b=9\\a=3^2;b=2\Leftrightarrow a=9;b=2\end{cases}}\)
Vậy nếu: a=2 thì b=9
a=9 thì b=2
@Sorou@ a<b.Câu hỏi của Võ Nguyễn Anh Quân - Toán lớp 6 - Học toán với OnlineMath