Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số cần tìm lần lượt là x;y
Theo đầu bài ta có:
\(\frac{2}{7}\cdot x=\frac{3}{14}\cdot y=\frac{x}{21}=\frac{y}{28}=\frac{x+y}{21+28}=\frac{105}{49}=\frac{15}{7}\)
(Áp dụng tính chất dãy tỉ số bằng nhau)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{15}{7}\cdot21=45\\y=\frac{15}{7}\cdot28=60\end{cases}}\)
Gọi hai số cần tìm là a và b (a,b >0)
Theo đề bài ta có:
\(a+b=105\)
\(\frac{2}{7}a=\frac{3}{14}b\Leftrightarrow\frac{a}{\frac{3}{14}}=\frac{b}{\frac{2}{7}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{3}{14}}=\frac{b}{\frac{2}{7}}=\frac{a+b}{\frac{3}{14}+\frac{2}{7}}=\frac{105}{\frac{1}{2}}=210\)
\(\cdot\frac{a}{\frac{3}{14}}=210\Rightarrow a=210\times\frac{3}{14}=45\)
\(\cdot\frac{b}{\frac{2}{7}}=210\Rightarrow b=210\times\frac{2}{7}=60\)
Vậy hai số cần tìm là 45 và 60
Gọi số thứ nhất là a và số thứ 2 là b,,ta có a:2 và b:2,5
=>\(\frac{a}{b}\)=\(\frac{b}{2,5}\)
=>\(\frac{ax2,5}{5}\)=\(\frac{bx2}{5}\)\(ax2,5\)=\(bx2\)
Vậy a = 2 phần thì b=2,5 phần
Số thứ 1 là : 21,3:(2,5-2)=85,2
Số thứ 2 :85,2+21,3=106,5
ta có 3/4 số thứ nhất = 2/3 số thứ 2
=> Số thứ nhất là: 9 phần số thứ 2 là: 8 phần
Tổng số phần là: 9 + 8 = 17
Số thứ nhất là: 68 : 17 x 9 = 36
Số thứ 2 là : 68 - 36 = 32