Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài ra khi chia tử và mẫu ta được số \(0\) \(abc\) nên phân số có dạng:
\(\dfrac{abc}{999}\)
Ta có:
\(\dfrac{abc}{999}=\dfrac{abc}{3^3.37}=\dfrac{abc.37^2}{\left(3.37\right)^2}\)
Vì phân số này bằng lập phương của phân số khác nên \(abc.37^2\)
\(=\left(d.37\right)^3\Rightarrow abc=37d^3\)
Mặt \(\ne\) \(0< abc< 999\Rightarrow37d^3< 999\Rightarrow d^3< 27\)
\(\Leftrightarrow d=3\)
Với \(d=1\) thì \(abc=037\Rightarrow\) phân số cần tìm là: \(\dfrac{037}{999}=\dfrac{1}{27}\)
Với \(d=2\) thi \(abc=296\Rightarrow\) phân số cần tìm là: \(\dfrac{296}{999}=\dfrac{8}{27}\)
Không mất tổng quát, giả sử cả tử và mẫu của phân số cần tìm đều dương.
Gọi phân số đó là \(\dfrac{m}{n}\) với \(m,n\inℕ^∗\), \(m< n\) và \(ƯCLN\left(m,n\right)=1\).
Theo đề bài, ta có: \(\dfrac{m}{n}=\left(\dfrac{a}{b}\right)^3\) (với \(a< b\inℕ^∗\) và \(ƯCLN\left(a,b\right)=1\))
Và \(\dfrac{m}{n}=0,\overline{xyzxyzxyz...}\) \(=\dfrac{x}{10^1}+\dfrac{y}{10^2}+\dfrac{z}{10^3}+\dfrac{x}{10^4}+...\)
\(=x\left(\dfrac{1}{10^1}+\dfrac{1}{10^4}+...\right)+y\left(\dfrac{1}{10^2}+\dfrac{1}{10^5}+...\right)+z\left(\dfrac{1}{10^3}+\dfrac{1}{10^6}+...\right)\)
Ta sẽ rút gọn tổng \(S_1=\dfrac{1}{10^1}+\dfrac{1}{10^4}+...\)
Có \(1000S_1=100+\dfrac{1}{10^1}+...\)
\(\Rightarrow999S_1=100\) \(\Rightarrow S_1=\dfrac{100}{999}\)
Có \(S_2=\dfrac{1}{10^2}+\dfrac{1}{10^5}+...\)
\(\Rightarrow1000S_2=10+\dfrac{1}{10^2}+...\)
\(\Rightarrow999S_2=10\Rightarrow S_2=\dfrac{10}{999}\)
Lại có \(S_3=\dfrac{1}{10^3}+\dfrac{1}{10^6}+...\)
\(\Rightarrow1000S_3=1+\dfrac{1}{10^3}+...\)
\(\Rightarrow999S_3=1\Rightarrow S_3=\dfrac{1}{999}\)
Từ đó ta có \(\dfrac{m}{n}=\dfrac{100x+10y+z}{999}=\dfrac{\overline{xyz}}{999}\), suy ra \(\overline{xyz}< 999\)
Vì \(999=3^3.37\) nên để phân số có thể viết thành lập phương của 1 phân số khác thì \(\overline{xyz}⋮37\). Gọi phân số sau khi rút gọn \(\dfrac{m}{n}\) cho 37 là \(\dfrac{k}{27}\). Khi đó vì \(k\) là 1 lập phương đúng của 1 số nguyên nhỏ hơn 27 nên \(k\in\left\{1,8\right\}\). Thử lại, cả 2 trường hợp đều thỏa mãn.
Vậy các phân số cần tìm là \(\dfrac{1}{27}\) và \(\dfrac{8}{27}\).
2. Các số đó là 153, 351, 450, 657, 756, 297, 459.
Còn lại mik ko biết thông cảm nha
k với
câu 1 đáp án là 1998 ta lấy 333,666,999 cộng lại sẽ ra